Device for controlling deformation of a large-scale crankshaft

    公开(公告)号:US12103092B2

    公开(公告)日:2024-10-01

    申请号:US17394721

    申请日:2021-08-05

    CPC classification number: B23B5/18 B24B1/04

    Abstract: A device for controlling deformation of a large-scale crankshaft comprising a crankshaft holder that is arranged for fixing the crankshaft so that the crankshaft is aligned with an axis; a regulatory bracket that is arranged on the crankshaft holder at a position corresponding to the crankshaft; and a high-energy acoustic beam transducer that is arranged on the bracket and is provided with an end part coupled with the crankshaft. The crankshaft is fixed through the crankshaft holder, high-energy ultrasonic waves are injected into the crankshaft by the transducer, mass points in the crankshaft are driven to vibrate along the acoustic beam direction, and machining residual stress of the crankshaft is removed through the high-energy acoustic beam to realize the regulation and control of the residual stress in the material in the specific direction, so that machining precision of the crankshaft is ensured and machining deformation of the crankshaft is reduced.

    Device for Controlling Deformation of A Large-Scale Crankshaft

    公开(公告)号:US20220080510A1

    公开(公告)日:2022-03-17

    申请号:US17394721

    申请日:2021-08-05

    Abstract: A device for controlling deformation of a large-scale crankshaft comprising a crankshaft holder that is arranged for fixing the crankshaft so that the crankshaft is aligned with an axis; a regulatory bracket that is arranged on the crankshaft holder at a position corresponding to the crankshaft; and a high-energy acoustic beam transducer that is arranged on the bracket and is provided with an end part coupled with the crankshaft. The crankshaft is fixed through the crankshaft holder, high-energy ultrasonic waves are injected into the crankshaft by the transducer, mass points in the crankshaft are driven to vibrate along the acoustic beam direction, and machining residual stress of the crankshaft is removed through the high-energy acoustic beam to realize the regulation and control of the residual stress in the material in the specific direction, so that machining precision of the crankshaft is ensured and machining deformation of the crankshaft is reduced.

    BAUSCHINGER EFFECT TEST FIXTURE
    5.
    发明申请

    公开(公告)号:US20220065763A1

    公开(公告)日:2022-03-03

    申请号:US17332372

    申请日:2021-05-27

    Abstract: A Bauschinger effect test fixture that cooperates with a test machine for stretching and compressing materials to perform a Bauschinger effect test on a test piece having a symmetrical configuration with two wide ends and a narrow middle part. The fixture includes two identical split bodies, where each split body has a base provided, longitudinally from a central part to one end of the base, with a limiting groove corresponding to a half of the profile of the test piece. Two sides of the groove are arranged symmetrically with a plurality of threaded through holes and a cover is provided along its central axis with two threaded through holes with which the test piece is pressed tightly by bolts. An end of the cover corresponding to a notch of the limiting groove is provided with a through groove configured for placing a stress ultrasonic detection probe on the test piece.

    METHOD FOR CONTROLLING DEFORMATION OF A LARGE-SCALE CRANKSHAFT

    公开(公告)号:US20220081736A1

    公开(公告)日:2022-03-17

    申请号:US17363579

    申请日:2021-06-30

    Abstract: A method for controlling deformation of a large-scale crankshaft comprising detecting and recording stress value(s) of part(s) to be regulated by the crankshaft; fixing the crankshaft on a tool to couple transmitting ends of high-energy acoustic beam transducers with the part(s) to be regulated; turning on the high-energy acoustic beam transducers to emit high-energy acoustic beams into the crankshaft, controlling working frequencies of the high-energy acoustic beam transducers within a range of 10-30 kHz, and setting a predicted regulation and control time according to the stress value(s) of the part(s) to be regulated; and closing the high-energy acoustic beam transducers when the predicted regulation and control time is reached, and taking the crankshaft out of the tool.

Patent Agency Ranking