Abstract:
An ultrasonic impact grinding assembly includes a base with a mount for connecting a workpiece to the base and a first tool arm. The ultrasonic impact grinding assembly also includes a second tool arm. The first tool arm and the second tool arm each include a base end, a distal end, at least one joint between the base end and the distal end, and at least one actuator configured to move the at least one joint. A first ultrasonic impact grinding tool head is connected to the distal end of the first tool arm. A second ultrasonic impact grinding tool head is connected to the distal end of the second tool arm.
Abstract:
A method of machining ceramic matrix composite components includes providing an ultrasonic vibration tool having a tool tip, and exciting the tool by providing a control current, such that the tool tip is repeatedly vibrated towards and away from a ceramic matrix composite workpiece. A slurry feed is supplied including abrasive particles to a surface to be machined by the tool tip. A vibration amplitude of the tool tip is controlled by sensing load on the tool and communicating with a computing device. The computing device controls the vibration amplitude of the tool tip. The computing device is provided with at least one memory programmed with historic data, and is operable to modify the vibration amplitude signal being sent to the tool, and comparing resulting load levels due to the change in vibration amplitude signals, and storing the change in vibration amplitude signals at the memory.
Abstract:
A surface of a workpiece is treated by rotating about an axis a brush having a multiplicity of radially projecting bristles with tips engaging a surface of a workpiece to be treated while positioning a stop nonrotatable with the brush in engagement with the bristles radially inward of the stop so as to rearwardly deflect the bristles prior to contact with the workpiece and thereby store kinetic energy in the bristles so that as the bristles pass the stop the kinetic energy is released and the bristles spring elastically forward and percussively strike the workpiece surface. A roughness of the workpiece surface is determined and the stop is positioned radially relative to the axis or the brush is positioned relative to the workpiece at a spacing in accordance with the determined roughness.
Abstract:
A method and a device applying surface structuring to a surface of a workpiece on a machine tool, performing a feed motion of a milling cutter which is rotationally driven by a work spindle of the machine tool, received in a tool head of the machine tool and has at least one protruding cutting edge along the surface of the workpiece; applying the surface structuring in accordance with a predetermined pattern to the surface of the workpiece during the feed motion of the milling cutter on the basis of a control signal to an actuator which is integrated in the tool head and is configured to drive a vibration of the milling cutter on the basis of the control signal, wherein the control signal contains high-frequency carrier signal and a useful signal which modulates the carrier signal and which is generated on the basis of data indicating the predetermined pattern.
Abstract:
A machine tool of high-frequency vibration is provided. A main shaft structure of the machine tool comprises a rotating shaft, the end of which is provided with a tool holder chuck for fixing a tool holder; the upper portion of which is provided with a rotating coil portion; the main shaft structure is correspondingly provided with a stationary coil portion; and the tool holder is provided with a high-frequency vibration module. By non-contact coils, an external electric power/signal can be transmitted into the high-frequency vibration module to avoid a wear phenomenon in a contact-rotating electrode. Because the inductive coil is arranged outside of the tool holder, the manufacturing cost of the tool holder is reduced, and the convenience of changing the tool holder is increased. Moreover, the machining stability and efficiency of the tool holder are improved by a control method of sensing/feedback signals with wireless transmission.
Abstract:
A machine tool, for example a hand-held belt grinder, is subjected to high frequencies outside a working plane between an abrasive belt and a workpiece. In particular, the machine tool is subject to high frequencies in a free-running region of the belt, of an excitation actuator, in particular by a piezo element.
Abstract:
To provide a method of processing a tempered glass in a simple and appropriate manner while a degree of freedom of processing is secured. Vibration of the processing device is controlled in a feedback fashion such that a vibration amplitude and a vibration frequency of the processing device approach to a target vibration amplitude and a target vibration frequency not to keep them in a range where a value of worsening the quality is generated. Further, a specified sample cycle of 0.3 msec or less in the feedback control is employed.
Abstract:
A computer numerical control machine tool for grinding two sides of a plane by shifting self-rotation ultrasonic vibration, wherein a pillar (3) is provided on the tool body (1) of the machine tool, a Y axis movement assembly (12) is provided on the platform of the tool body (1), with a lower revolving movement assembly (11), which revolves about a Z coordinate axis, being mounted on the upper surface of the Y axis movement assembly (12), and a lower grinding plate (10) being mounted coaxially above the lower revolving movement assembly (11); an ultrasonic vibration assembly (2) is mounted fixedly on the pillar (3), with a separation plate (8) for clamping a workpiece assembly (9) being provided on the ultrasonic vibration assembly (2); an X axis movement assembly (4) is mounted on the upper part of the pillar (3), a Z axis movement assembly (5) is mounted on the upright face of the X axis movement assembly (4), with an upper revolving movement assembly (6), which revolves about the Z coordinate axis, being provided on the Z axis movement assembly (5), and an upper grinding plate (7) being mounted coaxially on the revolving axis of the upper revolving movement assembly (6). The present invention enhances the time variation of grinding movement tracks, the uniformity of grinding speed distribution, machining efficiency and machining precision.
Abstract:
To provide a processing device for a tempered glass in which a period of employable time is significantly increased. The processing device (8) for processing a chemical tempered glass (1) having a surface reinforced layer, which is rotated around its shaft center and vibrated in a direction of extending the shaft center, is provided. At least an outer surface of a front end thereof is formed to be a surface (8b-1) for retaining diamond grind grains, and a concave portion (30) is formed on a central part in a radial direction on a front surface (8c) thereof.
Abstract:
Methods and a system for processing semiconductor substrates are provided. A method of processing a semiconductor substrate includes selecting a predetermined vibration profile that will achieve predetermined material removal characteristics from the semiconductor substrate in a chemical mechanical planarization (CMP) polish, actuating a vibration actuator based on the predetermined vibration profile, and polishing the semiconductor substrate based substantially entirely on the predetermined vibration profile achieved by actuation of the vibration actuator.