Abstract:
A field deployable infrared imaging (FDIR) system for inspecting a composite component comprises an emitter configured to impart heat into a composite component via infrared radiation, a camera configured to capture an infrared image of the composite component, and a processing system configured to post-process the infrared image. A method of inspecting a composite component is disclosed that comprises subjecting a component to infrared radiation, capturing a thermal image of the component, inspecting the captured thermal image for defects in the composite component, and post-processing the thermal image using a second order derivative algorithm wherein the post-processed thermal image shows the defect better than the captured infrared image.
Abstract:
A field deployable infrared imaging (FDIR) system and method for inspecting a composite component comprises a hand-held long-wave IR camera to capture a thermal image of the composite component, wherein the camera has an adjustable temperature control that captures an image with a 10 degree working range, a frame capture rate of at least 1 second for a length of time of not less than 90 seconds; and a processor for post-processing the thermal image using a second order derivative algorithm wherein the post-processed thermal image shows the defect better than the captured infrared image, and detects the one or more defects in the composite component.
Abstract:
A method of performing structural analysis relating to a component having CAD-based geometry, refined CAD-based geometry and CAD-based FEA data associated therewith. The method includes scanning the component to obtain scan-based point cloud geometry of the component, aligning the scan-based point cloud geometry with the CAD-based geometry of the component, generating scan-based geometry of the component by refining the scan-based point cloud geometry, comparing the scan-based geometry with the refined CAD-based geometry of the component to quantify geometric differences therebetween, generating scan-based FEA geometry of the component by meshing the scan-based geometry, performing finite element analysis on the scan-based FEA geometry to obtain scan-based FEA data and comparing the scan-based FEA data with the CAD-based FEA data of the component to quantify the effect of geometric difference therebetween.
Abstract:
One aspect of a process to inspect a composite component includes traversing multiple ultrasonic probe array portions on respective multiple component surfaces of the composite component. The multiple component surfaces are either separate from or at angles to each other. The process includes simultaneously passing an ultrasonic signal into the multiple component surfaces through the multiple ultrasonic probe array portions. The process also includes receiving a response to the ultrasonic signal through the multiple ultrasonic probe array portions.
Abstract:
A system and method to inspect flaws associated with a part. The system includes a first image capturing device configured to capture a first set of images of the part and a computer operably associated with first image capturing device and configured to receive and analyze the first set of images. The method includes treating the part with a nital etchant solution, capturing a first set of images of an outer surface of the part with the first image capturing device, and identifying a part defect with an algorithm associated with the computer.
Abstract:
A method of performing structural analysis relating to a component having CAD-based geometry, refined CAD-based geometry and CAD-based FEA data associated therewith. The method includes scanning the component to obtain scan-based point cloud geometry of the component, aligning the scan-based point cloud geometry with the CAD-based geometry of the component, generating scan-based geometry of the component by refining the scan-based point cloud geometry, comparing the scan-based geometry with the refined CAD-based geometry of the component to quantify geometric differences therebetween, generating scan-based FEA geometry of the component by meshing the scan-based geometry, performing finite element analysis on the scan-based FEA geometry to obtain scan-based FEA data and comparing the scan-based FEA data with the CAD-based FEA data of the component to quantify the effect of geometric difference therebetween.
Abstract:
A system and method to inspect flaws associated with a part. The system includes a first image capturing device configured to capture a first set of images of the part and a computer operably associated with first image capturing device and configured to receive and analyze the first set of images. The method includes treating the part with a magnetic particle and fluorescent penetrant processing, capturing a first set of images of an outer surface of the part with the first image capturing device, and identifying a part defect with an algorithm associated with the computer.
Abstract:
A field deployable infrared imaging (FDIR) system and method for inspecting a composite component comprises a hand-held long-wave IR camera to capture a thermal image of the composite component, wherein the camera has an adjustable temperature control that captures an image with a 10 degree working range, a frame capture rate of at least 1 second for a length of time of not less than 90 seconds; and a processor for post-processing the thermal image using a second order derivative algorithm wherein the post-processed thermal image shows the defect better than the captured infrared image, and detects the one or more defects in the composite component.
Abstract:
A method for mobile robotic based inspection includes delivery of inspection requirements identifying a part and one or more inspection mode types. A three-dimensional model of the part and one or more physical attributes or specifications of the aeronautical part are received. A plurality of different motion sequences for the robot inspection system are determined to evaluate a plurality of predefined points on the component using one or more sensors for the one or more inspection types. Data acquisition parameters are determined for inspection sequence to allow for collection of inspection data for one or more inspection modes. A motion sequence from the plurality of different motion sequences is selected based on one or more parameters. An optimized inspection program configured to update operating parameters of the robot inspection system to perform the selected motion sequence and capture data using the one or more sensors is generated.
Abstract:
One aspect of a process to inspect a composite component includes traversing multiple ultrasonic probe array portions on respective multiple component surfaces of the composite component. The multiple component surfaces are either separate from or at angles to each other. The process includes simultaneously passing an ultrasonic signal into the multiple component surfaces through the multiple ultrasonic probe array portions. The process also includes receiving a response to the ultrasonic signal through the multiple ultrasonic probe array portions.