Abstract:
A mapping catheter includes an elongated body for inserting into patient vasculature. A distal end of the elongated body includes a distal portion that includes a plurality of electrodes, a proximal portion disposed proximal to the distal portion, and a reduced-dimension portion disposed between the proximal and distal portions. The distal end is formed, at least in part, from a memory shape material that bends into a preformed shape upon release from a confined space. The preformed shape includes a first loop formed, at least in part, by the distal portion. The first loop is transverse to a longitudinal axis of the proximal portion. The reduced-dimension portion is configured and arranged to bend such that the reduced-dimension section advances distally through the first loop when the first loop is held in a fixed position and a force is applied distally along the longitudinal axis of the proximal portion.
Abstract:
Various embodiments concern delivering an ablation therapy to different areas of the cardiac tissue and, for each of the areas, sensing an ultrasound signal with at least one ultrasound sensor, the ultrasound signal responsive to the ultrasound energy reflected from the area of cardiac tissue. Such embodiments can further include for each of the plurality of different areas of the cardiac tissue, associating with each area an indication of the degree to which the area of cardiac tissue was lesioned by the delivery of the ablation therapy based on the ultrasound signal and representing a map of the different areas on a display. A user input can select one of the different areas and the indication associated with the selected one area can be represented on the map.
Abstract:
Devices, systems, and methods for ultrasonically acquiring far-field and near-field images within a body are disclosed. An ultrasound imaging device adapted for insertion within a body includes a first ultrasonic sensor configured to transmit ultrasonic waves at a first frequency for acquiring far-field images within the body, and a second ultrasonic sensor configured to transmit ultrasonic waves at a higher frequency than the first frequency for acquiring near-field images within the body. The ultrasound imaging device can be connected to a control device and user interface for visualizing far-field and near-field images acquired by the ultrasonic sensors.