Abstract:
A method and circuit for adjusting clock pulse widths in a high speed sample and hold circuit. A single phase clock signal is input into a pulse discriminator and separated into rising and falling edges. The edges are adjusted to a desired slope. The adjusted edges and the unadjusted edges are summed and output as multiple clock signals with a desired pulse edge alignment. The clock signals control switches in a manner to reduce signal dependent sampling distortion.
Abstract:
Provided is a switched capacitor feedback circuit including two or more input ports configured to receive a corresponding a number of input signals and at least one output port. The output port is configured to output an adjusting signal. The input signals includes a number of primary signals and two or more reference signals that are associated with a first timing phase of operation. The adjusting signal is produced based upon a comparison between the primary signals the reference signals. Also provided is a pair of active devices having gates coupled together and structured to receive the adjusting signal. The active devices are configured to provide a gain to the adjusting signal in accordance with a predetermined gain factor, and facilitate an adjustment to the number of primary signals based upon the gain during a second timing phase of operation.
Abstract:
A circuit and method for bridging an analog signal between two integrated circuits operating at different supply voltages. The circuit is a two stage fixed gain amplifier. The first stage is a transconductance amplifier and the second stage is an operational amplifier. The first stage converts an input signal from a voltage into a current. The second stage converts the current signal to an output voltage signal.
Abstract:
A circuit and method for bridging an analog signal between two integrated circuits operating at different supply voltages. The circuit is a two stage fixed gain amplifier. The first stage is a transconductance amplifier and the second stage is an operational amplifier. The first stage converts an input signal from a voltage into a current. The second stage converts the current signal to an output voltage signal.