摘要:
An optical mode coupling apparatus includes an optical waveguide in which an optical signal at a signal wavelength propagates in a first spatial propagation mode and a second spatial propagation mode of the waveguide. The optical signal propagating in the waveguide has a beat length. The coupling apparatus includes a source of perturbational light signal at a perturbational wavelength that propagates in the waveguide in the first spatial propagation mode. The perturbational signal has a sufficient intensity distribution in the waveguide that it causes a perturbation of the effective refractive index of the first spatial propagation mode of the waveguide in accordance with the optical Kerr effect. The perturbation of the effective refractive index of the first spatial propagation mode of the optical waveguide causes a change in the differential phase delay in the optical signal propagating in the first and second spatial propagation modes. The change in the differential phase delay is detected as a change in the intensity distribution between two lobes of the optical intensity distribution pattern of an output signal. The perturbational light signal can be selectively enabled and disabled to selectively change the intensity distribution in the two lobes of the optical intensity distribution pattern.
摘要:
An optical fiber is subjected to a series of traveling flexural waves propagating along a length of the fiber. At least a portion of an optical signal propagating within the optical fiber in a first propagation mode is coupled to a second propagation mode. The optical signal in the second propagation mode has a frequency which is equal to either the sum of or the difference between the frequency of the optical signal in the first propagation mode and the frequency of the traveling flexural waves. The frequency of the optical signal in the second propagation mode is shifted upward or downward from the frequency of the optical signal in the first propagation mode as determined by the direction of propagation of the first optical signal with respect to the direction of propagation of the traveling flexural waves, and as also determined by whether the phase propagation velocity of the optical signal in the first propagation mode is greater than or less than the propagation velocity of the optical signal in the second propagation mode.
摘要:
The present invention discloses a thermally stable rare-earth doped fiber source comprising an active medium such as Erbium or Neodymium. The thermal stability of the mean wavelength of such a source is determined by three contributions as expressed by the following differential equation: ##EQU1## The first term is the intrinsic temperature dependence of the active medium, the second term is the pump power dependence and the third term is a contribution that arises from the dependence of the emission wavelength on the pump wavelength. The method of the present invention minimizes the temperature dependence on the mean wavelength by using the above equation and optimizing the values of the pump power and the pump wavelength so that the three contributions in the governing equation cancel each other.
摘要:
A distributed sensor system using pulsed optical signals optionally produced by a short coherence length source to provide a phase difference output signal representative of conditions affecting a selected sensor. In one preferred embodiment, an array of fiber-optic sensors are organized in a ladder configuration, with the sensors positioned in spaced relation and defining the rungs of the ladder. Light pulses transmitted through the sensors are multiplexed onto a return arm of the ladder. The multiplexed signals are received by an optical fiber compensating interferometer which coherently couples portions of adjacent multiplexed light signals to produce a phase difference signal representing conditions influencing selected sensors. In other preferred embodiments, the system is configured to define a plurality of adjacent Mach-Zehnder interferometers which provide output signal pairs which coherently couple to yield a phase difference signal directly representing the environmental effects on a particular sensor. Functional equivalents of the Mach-Zehnder interferometer configurations comprise configurations including adjacent Michelson interferometers. A phase and amplitude modulation technique is disclosed for providing heterodyned output signals from the distributed sensor system.
摘要:
A Brillouin fiber optic gyroscope having a feedback system which monitors the difference between counterpropagating Brillouin intensities and utilizes this difference in the form of a correction signal to control one of the circulating pump intensities so as to equalize the circulating pump intensities. The Brillouin fiber optic gyroscope further includes a second feedback system which detects electrical signals proportional to the phase-modulated, counterpropagating intensities in the gyroscope, and utilizes a combination of the electrical signals as an error signal to stabilize the resonant cavity at a length substantially equal to a length midway between the resonant lengths of the counterpropagating pump signals. The Brillouin fiber optic gyroscope of the present invention also provides a dynamic range of the gyroscope rotation rate that is twice the dynamic range of existing gyroscopes.
摘要:
An optical fiber is subjected to a series of traveling flexural waves propagating along a length of the fiber. At least a portion of an optical signal propagating within the optical fiber in a first propagation mode is coupled to a second propagation mode. The optical signal in the second propagation mode has a frequency which is equal to either the sum of or the difference between the frequency of the optical signal in the first propagation mode and the frequency of the traveling flexural waves. The frequency of the optical signal in the second propagation mode is shifted upward or downward from the frequency of the optical signal in the first propagation mode as determined by the direction of propagation of the first optical signal with respect to the direction of propagation of the traveling flexural waves, and as also determined by whether the phase propagation velocity of the optical signal in the first propagation mode is greater than or less than the propagation velocity of the optical signal in the second propagation mode. An acoustic wave is induced in a generator having a gradual tapered cross-section. The generator preferably has the shape of a horn and is coaxially mounted with said optical fiber, so as to suppress the acoustic wave induced in the optical fiber in the reverse direction.
摘要:
A technique and system for accurate determination of differential propagation delays in fiber-optic circuits. The method includes providing a sinusoidally modulated optical signal to each of two waveguides defining optical paths. The optical signals received from the optical paths are combined to form a reference output signal which has a null waveform whenever the propagation delay between the optical signals contains an odd number of half periods of the optical signal waveforms. The difference in the sinusoidal modulation frequency producing a first and second null or constant waveform in the reference signal is determined. This difference value between adjacent frequencies forming the null or constant waveforms comprises the inverse of the difference of signal propagation delay in the two optical paths. Accuracy is improved by measuring the sinusoidal modulation frequencies corresponding to first and second waveforms which are not formed by adjacent frequencies. The difference between those nonadjacent frequencies is divided by the difference in the reference waveform orders of the null reference waveforms to obtain the inverse of the differential propagation delay. Further accuracy is achieved by measuring at least one of the waveform nulls at a high waveform order. Still further accuracy is achieved by monitoring the reference waveforms on a network analyzer and using a frequency synthesizer to more precisely match and identify the modulation frequencies corresponding to the null reference signal waveforms. A system is disclosed for implementing this technique optionally using optical sources having a short coherence length. Mathematical relationships are disclosed for use with measured values in obtaining further improved accuracy.
摘要:
An optical fiber laser includes a single-mode optical fiber doped with a lasing material such as Neodymium. The optical fiber is pumped with a pump optical signal having a pump wavelength selected to cause spontaneous emission of an optical signal at a second wavelength different from the pump wavelength. The optical fiber is formed into a laser cavity such as by including a suitable reflector at each of the two ends of a suitable length of the optical fiber so that the emitted optical signal oscillates therein. One of the reflectors has a reflectivity at the wavelength of the emitted light so that most (e.g., approximately 95%) of the emitted light is reflected back into the laser cavity and a smaller portion (e.g, approximately 5%) is transmitted through the mirror as a laser output signal. Alternatively, the optical fiber can be formed into a ring laser structure using an optical coupler that couples a substantial portion (e.g., approximately 95%) of the emitted light back into the ring for recirculation therein and provides a smaller portion of the emitted light (e.g., approximately 5%) as a laser output signal. The wavelength of the pump optical signal is selected to be outside the pump variable tuning range of the Neodymium-doped optical fiber (i.e., the range of pump wavelengths which stimulate emitted wavelengths having a average wavelengths with a generally one-to-one correspondence to the pump wavelength). Pumping with a pump signal outside the pump variable tuning ranges causes the emitted light to have a broad spectral envelope of longitudinal modes having emission wavelengths corresponding to substantially all the pump variable tuning range. Thus, by pumping the optical fiber with a single pump wavelength, a broadband laser output signal is generated.
摘要:
A superfluorescent broadband fiber laser source comprises a fiber doped with laser material coupled to a multiplexing coupler. In the preferred embodiment, a source of pumping illumination provides pumping light to the doped fiber, and the coupler is adjusted to have a 0% coupling efficiency at the wavelength of the source. The pumping light is sufficiently intense to produce amplified spontaneous emission within the doped fiber, and gives rise to a forward signal and a backward signal. One of the superfluorescent signals is reflected back to the doped fiber by a reflector cemented to one end of the doped fiber or to one end of another fiber through the coupling function of the coupler. The coupler is adjusted to provide complete coupling at the frequency of the lasing light. The temperature dependence of the coupler can be selected to reduce or cancel the temperature dependence of the superfluorescent signal. Other arrangements utilizing the multiplexing properties of the coupler are also described. An all-fiber reflector can also be used.
摘要:
A system and method for detecting the influence of selected forces on an interferometer over an extended dynamic range. One presently preferred embodiment is disclosed for detecting rotation of an interferometer. In this embodiment, an open-loop, all-fiber-optic gyroscope provides an output signal comprising the phase difference of two light waves which are counterpropagating within the gyroscope, and which are phase modulated at a selected frequency. The phase difference of the light waves is influenced by the rotation rate of the interferometer. The output signal is amplitude modulated at the phase modulation frequency to transpose the optical phase shift into a low frequency electronic phase shift, which is measured using a digital time interval counter. A linear scale factor is achieved through use of this system and method.