Abstract:
A beam-shaping optical system suitable for use with optical coherence tomography having a beam-shaping insert having a polymeric material, the beam-shaping insert integrally defining a beam-shaping element. The beam-shaping element has a reflective element positioned on a curved surface. A light source generates an electromagnetic beam. An optical fiber having a core and a cladding, the optical fiber having first end optically coupled with the light source and a fiber end. The fiber end is configured to emit the electromagnetic beam toward the beam-shaping element. The reflective element has a reflectivity greater than about 98% for both a first wavelength band of the electromagnetic beam and a second wavelength band of the electromagnetic beam.
Abstract:
Monolithic beam-shaping optical systems and methods are disclosed for an optical coherence tomography (OCT) probe that includes a transparent cylindrical housing having asymmetric optical power. The system includes a transparent monolithic body having a folded optical axis and at least one alignment feature that supports the end of an optical fiber adjacent an angled planar end wall. The monolithic body also includes a total-internal reflection surface and a lens surface that define object and image planes. Light from the optical fiber end traverses the optical path, which includes the cylindrical housing residing between the lens surface and the image plane. Either the lens surface by itself or the lens surface and the reflective (eg, TIR) surface in combination are configured to substantially correct for the asymmetric optical power of the cylindrical housing, thereby forming a substantially rotationally symmetric image spot at the image plane.
Abstract:
A beam-shaping optical system suitable for use with optical coherence tomography includes a sheath defining a central cavity having an inner wall, an optical fiber positioned within a ferrule, the ferrule configured to mate with the inner wall of the sheath, and a beam-shaping insert positioned within the sheath and configured to mate with the inner surface of the sheath. The beam-shaping insert defines a beam-shaping element. The optical fiber is configured to emit an electromagnetic beam toward the beam-shaping element and the beam-shaping element is configured to reflect the electromagnetic beam externally to the beam-shaping insert.
Abstract:
An OCT optical probe component comprising: A rod having a first end and a second end, a lens situated proximate to the second end of the rod, the lens having a surface with an inner zone a, and an outer zone b, wherein the inner zone a is associated with the focal length fla, and said outer zone b is associated with the focal length flb, such that optical probe component is multi-focal, the optical probe capable of imaging at multiple image planes, via the lens of an object adjacent to the first end of the rod, wherein the at least two images are separated by a distance d, wherein d>1 mm.
Abstract:
According to some embodiments a housing for the OCT comprises: (a) a tubular body with an inner diameter of less than 5 mm (for example less than 2 mm, and in some embodiments not greater than 1.5 mm), a first end, a second end; and a window formed in the tubular body closer to the second end than to the first end, displaced from the second end, and framed by a portion of the tubular body, wherein the window has a width w. According to some embodiments, 0.05 mm
Abstract:
An apparatus comprises an array of light emitting diodes (LEDs), each LED in the array having an asymmetric optical characteristic. The asymmetric optical characteristic of a first subset of LEDs in the array is oriented at an angle of 90°, 180°, or 270° with respect to the asymmetrical optical characteristic of a second subset of LEDs in the array. The apparatus may be the array of LEDs or an illumination system comprising a light source comprising the array of LEDs. Methods of manufacturing the apparatus are also provided.
Abstract:
A beam-shaping optical system includes a sheath defining a central cavity having an inner wall, an optical fiber positioned within the cavity and engaged with the inner wall of the sheath, and a beam-shaping insert positioned within the sheath and engaged with the inner wall of the sheath. The beam-shaping insert includes a beam-shaping element with a reflective element aligned with an optical axis of the optical fiber. The optical fiber is configured to emit an electromagnetic beam toward the beam-shaping element and the beam-shaping element is configured to reflect the electromagnetic beam externally to the beam-shaping insert.
Abstract:
An apparatus comprises an array of light emitting diodes (LEDs), each LED in the array having an asymmetric optical characteristic. The asymmetric optical characteristic of a first subset of LEDs in the array is oriented at an angle of 90°, 180°, or 270° with respect to the asymmetrical optical characteristic of a second subset of LEDs in the array. The apparatus may be the array of LEDs or an illumination system comprising a light source comprising the array of LEDs. Methods of manufacturing the apparatus are also provided.
Abstract:
A beam-shaping optical system suitable for use with optical coherence tomography includes a beam-shaping body having a beam-shaping element and an alignment feature. An optical fiber is coupled to the alignment feature. The fiber has a fiber end configured to emit an electromagnetic beam. The fiber and the body are configured to direct the beam into the beam-shaping element such that the beam is shaped solely by reflection into an image spot.
Abstract:
Monolithic beam-shaping optical systems and methods are disclosed for an optical coherence tomography (OCT) probe that includes a transparent cylindrical housing having asymmetric optical power. The system includes a transparent monolithic body having a folded optical axis and at least one alignment feature that supports the end of an optical fiber adjacent an angled planar end wall. The monolithic body also includes a total-internal reflection surface and a lens surface that define object and image planes. Light from the optical fiber end traverses the optical path, which includes the cylindrical housing residing between the lens surface and the image plane. Either the lens surface by itself or the lens surface and the reflective (eg, TIR) surface in combination are configured to substantially correct for the asymmetric optical power of the cylindrical housing, thereby forming a substantially rotationally symmetric image spot at the image plane.