Abstract:
A tappet assembly (100) used in mechanical equipment includes a tappet body (108) having a cylindrical shape and including a lower carrier portion (152) and an upper shell portion (158) having a cavity (150) defined by an inner wall (160) of the upper shell portion (158) and a top surface (154) of the lower carrier portion (152). The lower carrier portion (152) and the upper shell portion (158) are integrally formed as a single-piece unit. A post (162) extends upwardly from the top surface (154) of the lower carrier portion (152) and is configured to reduce a peak contact pressure associated with the tappet body (108).
Abstract:
A fuel injector including a flow balanced injector needle seal is provided. The fuel injector includes a needle in a fuel passage of the fuel injector body. The needle moves longitudinally in the fuel passage to selectively stop and start fuel injection from the fuel passage. The fuel injector includes a check valve assembly that maintains pressurized fuel in the fuel passage and permits fuel flow out of the fuel passage in response to a fuel injection event. The needle seal is provided between the check valve assembly and a sleeve that extends around the proximal end of the needle. The needle seal includes multiple inlet orifices for receiving a fuel flow into the needle seal that are positioned relative to one another so that net lateral forces on the needle are effectively offset from one another.
Abstract:
A valve (100) comprises a barrel (104) having a central bore (110), an inlet (112), and an outlet (114, 116), and a spool (120) disposed for motion within the central bore, including a ball tip (128), a metering edge (130), and a bore (132). The spool is moveable between a closed position, wherein the ball tip engages a seat (142) to prevent fluid flow through the inlet and the metering edge is disposed in a lower chamber (148) of the central bore to prevent the fluid flow through the outlet, and an opened position, wherein the tip is spaced apart from the seat to permit fluid flow through the inlet and the spool bore into an upper chamber (154) of the central bore to equalize pressure on the spool, and the metering edge is disposed in a flow path of the outlet to permit fluid flow through the outlet.
Abstract:
A fuel injector and a nozzle for a fuel injector is provided. The nozzle includes at least one spray hole that is formed through a hardened nozzle body. The nozzle body is hardened again after forming the at least one spray hole to hardened the nozzle body along the at least one spray hole.
Abstract:
A valve (100) comprises a barrel (104) having a central bore (110), an inlet (112), and an outlet (114, 116), and a spool (120) disposed for motion within the central bore, including a ball tip (128), a metering edge (130), and a bore (132). The spool is moveable between a closed position, wherein the ball tip engages a seat (142) to prevent fluid flow through the inlet and the metering edge is disposed in a lower chamber (148) of the central bore to prevent the fluid flow through the outlet, and an opened position, wherein the tip is spaced apart from the seat to permit fluid flow through the inlet and the spool bore into an upper chamber (154) of the central bore to equalize pressure on the spool, and the metering edge is disposed in a flow path of the outlet to permit fluid flow through the outlet.
Abstract:
A fuel injector and a nozzle for a fuel injector is provided. The nozzle includes at least one spray hole that is formed through a hardened nozzle body. The nozzle body is hardened again after forming the at least one spray hole to hardened the nozzle body along the at least one spray hole.
Abstract:
A system is provided for performing a cleaning process of a component of a vehicle. The system includes a first cleaning applicator configured to deliver a cleaning agent to a first surface of the component of the vehicle, a second cleaning applicator configured to deliver the cleaning agent to a second surface of the component of the vehicle, a third cleaning applicator configured to deliver the cleaning agent to a third surface of the component of the vehicle, and a control unit configured to instruct each of the first, second, and third cleaning applicators to project the cleaning agent onto the respective surface of the component for a corresponding predetermined period. The first, second, and third applicators are instructed to project the cleaning agent in a predetermined sequence.
Abstract:
A valve (100) comprises a barrel (104) having a central bore (110), an inlet (112), and an outlet (114, 116), and a spool (120) disposed for motion within the central bore, including a ball tip (128), a metering edge (130), and a bore (132). The spool is moveable between a closed position, wherein the ball tip engages a seat (142) to prevent fluid flow through the inlet and the metering edge is disposed in a lower chamber (148) of the central bore to prevent the fluid flow through the outlet, and an opened position, wherein the tip is spaced apart from the seat to permit fluid flow through the inlet and the spool bore into an upper chamber (154) of the central bore to equalize pressure on the spool, and the metering edge is disposed in a flow path of the outlet to permit fluid flow through the outlet.
Abstract:
A method and system is provided for reducing surface roughness of a diesel engine component. The method and system may apply a voltage to a plasma electrolyte polishing cell. The plasma electrolyte polishing cell may include a diesel engine component and an aqueous electrolyte solution. The method and system may cause a plasma layer to form around a surface of the diesel engine component as a result of applying the voltage to the plasma electrolyte polishing cell. The method and system may terminate the voltage to the plasma electrolyte polishing cell. The method and system may apply a coating process to the diesel engine component.
Abstract:
A method and system is provided for reducing surface roughness of a diesel engine component. The method and system may apply a voltage to a plasma electrolyte polishing cell. The plasma electrolyte polishing cell may include a diesel engine component and an aqueous electrolyte solution. The method and system may cause a plasma layer to form around a surface of the diesel engine component as a result of applying the voltage to the plasma electrolyte polishing cell. The method and system may terminate the voltage to the plasma electrolyte polishing cell. The method and system may apply a coating process to the diesel engine component.