Abstract:
A touch sensitive display includes a capacitive touch sensor configured to output capacitance values. A motion sensor makes a motion detection and generates a motion signal including a motion value indicative of sensed motion detection. A touch detection circuit is coupled to receive the capacitance values and motion values. The touch detection circuit processes the capacitance values to make a hovering detection and a touching detection with respect to the display. The touch detection circuit further generates an output signal including the motion value correlated in time with each of the hovering detection and touching detection. The output signal may be processed as a user interface control signal. The output signal may also be processed to determine an impulsive strength of the touching detection as a function of an elapsed time between hover and touch and the measured motion values.
Abstract:
A system and method for receiving character entries in mobile computer devices uses an improved keypad. The keypad uses a dual key press method in which each key of the keypad includes a unique key definition when it alone is pressed. Each of two adjacent keys of the keypad also include a unique key definition when the two adjacent keys are pressed at substantially the same time. A keypad controller receives inputs from the keys and decodes the single key entries and the dual key entries. The keypad occupies a relatively small keypad area while providing full size keys for the user. The keypad also has a mode key that enables a user to change the alphabet mode of the keypad to a numerical mode.
Abstract:
An apparatus and method are disclosed for providing a power switch array with adjustable current rating power switches. A plurality of current rating power switches is provided that connects a power supply unit to a plurality of device ports. A power switch array controller is provided that adjusts an adjustable current rating in each of the plurality of adjustable current rating power switches. Each of the plurality of adjustable current rating power switches is adjustable to a selected number of current values. The power switch array controller dynamically adjusts the current ratings in the adjustable current power switches as required by the current requirements of the device ports.
Abstract:
An electronic device, operating as a USB host, has an embedded processor and a system memory, connected by a memory bus. A host controller integrated circuit does not need to master the system memory, but instead acts purely as a slave. The embedded processor is then adapted to write the data to the host controller integrated circuit in the form of transfer-based transactions.
Abstract:
An apparatus and method are disclosed for providing a power switch array with adjustable current rating power switches. A plurality of current rating power switches is provided that connects a power supply unit to a plurality of device ports. A power switch array controller is provided that adjusts an adjustable current rating in each of the plurality of adjustable current rating power switches. Each of the plurality of adjustable current rating power switches is adjustable to a selected number of current values. The power switch array controller dynamically adjusts the current ratings in the adjustable current power switches as required by the current requirements of the device ports.
Abstract:
The present disclosure provides an addressable light emitting diodes (LED) architecture that is able to control a plurality of LEDs individually. The present disclosure further provides a method of controlling the operation of at least one chain of serially connected LEDs.
Abstract:
A method of matrix sensing using delay-based capacitance sensing, including using X-axis lines as active lines for capacitance measurements and using Y-axis lines as a disturbance to identify the location of a touch in a key matrix is disclosed. A sensing signal is applied to the X-axis lines, and a disturbance signal is applied to the Y-axis lines. If a location is touched, cross-capacitance is reduced, which is measured by sweeping data along the X-axis lines.
Abstract:
The present invention relates to a data processing system based on a multithreaded operating system. The data processing system comprises at least one processor (PROC) for processing data based on multiple threads, at least one controller unit (CU) for controlling the communication between said at least one processor (PROC) and an external peripheral device (PD) connected to said at least one controller unit (CU). Said at least one controller unit (CU) comprises at least one buffer memory (BM) for buffering data from said peripheral device (PD) connected to said at least one controller unit (CU), and at least one memory managing unit (MMU) for managing the access to said at least one buffer memory (BM) by mapping said at least one buffer memory (BM) into N banks (C0-C3) each with a dedicated prefetch register (Addr.0-Addr.3). At least one of said multiple threads (T0-T3) is mapped to one of said N banks (C0-C3) and its dedicated prefetch register (Addr.0-Addr.3).
Abstract:
A system and method for receiving character entries in mobile computer devices uses an improved keypad. The keypad uses a dual key press method in which each key of the keypad includes a unique key definition when it alone is pressed. Each of two adjacent keys of the keypad also include a unique key definition when the two adjacent keys are pressed at substantially the same time. A keypad controller receives inputs from the keys and decodes the single key entries and the dual key entries. The keypad occupies a relatively small keypad area while providing full size keys for the user. The keypad also has a mode key that enables a user to change the alphabet mode of the keypad to a numerical mode.
Abstract:
A method of matrix sensing using delay-based capacitance sensing, including using X-axis lines as active lines for capacitance measurements and using Y-axis lines as a disturbance to identify the location of a touch in a key matrix is disclosed. A sensing signal is applied to the X-axis lines, and a disturbance signal is applied to the Y-axis lines. If a location is touched, cross-capacitance is reduced, which is measured by sweeping data along the X-axis lines.