Abstract:
A system and method for analyzing biological samples, such as dried human blood serum, to determine a disease state such as colorectal cancer (CRC). Using dried samples may hold potential for enhancing localized concentration and/or segmentation of sample components. The method may comprise illuminating at least one location of a biological sample to generate a plurality of interacted photons, collecting the interacted photons and generating at least one Raman data set representative of the biological sample. A system may comprise an illumination source to illuminate at least one location of a biological sample and generate at least one plurality of interacted photons, at least one mirror for directing the interacted photons to a detector. The detector may be configured to generate at least one Raman data set representative of the biological sample. The system and method may utilize a FAST device for multipoint analysis or may be configured to analyze a sample using a line scanning configuration.
Abstract:
A portable system and method for analyzing biological tissue samples and detecting analytes associated with tissue oxygenation using a conformal filter. A conformal filter, which may comprise a tunable filter, is configured to filter interacted photons conforming to a spectral shape correlated with an analyte of interest. Conformal filter configurations may be selected by consulting a modified look-up table associated with an analyte. An iterative methodology may be used to calibrate a conformal design for an analyte of interest, refine a previous conformal filter design for an analyte of interest, and/or generate a new conformal filter design for an analyte of interest.
Abstract:
A system and method for determining at least one geometric property of a particle in a sample. A sample is irradiated to thereby generate Raman scattered photons. These photons are collected to generate a Raman chemical image. A first threshold is applied wherein the first threshold is such that all particles in the sample are detected. A particle in the sample is selected and a second threshold is applied so that at least one geometric property of the selected particle can be determined. At least one spectrum representative of the selected particle is analyzed to determine whether or not it is a particle of interest. The step of determining a second threshold may be iterative and automated via software so that candidate second thresholds are applied until a satisfactory result is achieved.
Abstract:
A system and method for analyzing biological samples, such as dried human blood serum, to determine a disease state such as colorectal cancer (CRC). Using dried samples may hold potential for enhancing localized concentration and/or segmentation of sample components. The method may comprise illuminating at least one location of a biological sample to generate a plurality of interacted photons, collecting the interacted photons and generating at least one Raman data set representative of the biological sample. A system may comprise an illumination source to illuminate at least one location of a biological sample and generate at least one plurality of interacted photons, at least one mirror for directing the interacted photons to a detector. The detector may be configured to generate at least one Raman data set representative of the biological sample. The system and method may utilize a FAST device for multipoint analysis or may be configured to analyze a sample using a line scanning configuration.
Abstract:
A method for analyzing organ samples using hyperspectral imaging comprising illuminating an organ sample to generate interacted photons, collecting the interacted photons and passing the interacted photons through a tunable filter. The filtered interacted photons are detected to generate a hyperspectral image. A brightfield image is generated and associated with the hyperspectral image. Spectra from locations of interest are extracted and analyzed to assess a characteristic of the organ sample. A system may comprise an illumination source to illuminate an organ sample and generate interacted photons, a collection optics for collecting the interacted photons and a tunable filter to filter the interacted photons. A detector is configured to detect the filtered photons and generate at least one hyperspectral image. The detector may also be configured to generate at least one brightfield image representative of the organ sample.