Abstract:
A system and method for analyzing biological samples, such as dried human blood serum, to determine a disease state such as colorectal cancer (CRC). Using dried samples may hold potential for enhancing localized concentration and/or segmentation of sample components. The method may comprise illuminating at least one location of a biological sample to generate a plurality of interacted photons, collecting the interacted photons and generating at least one Raman data set representative of the biological sample. A system may comprise an illumination source to illuminate at least one location of a biological sample and generate at least one plurality of interacted photons, at least one mirror for directing the interacted photons to a detector. The detector may be configured to generate at least one Raman data set representative of the biological sample. The system and method may utilize a FAST device for multipoint analysis or may be configured to analyze a sample using a line scanning configuration.
Abstract:
A system and method for determining at least one geometric property of a particle in a sample. A sample is irradiated to thereby generate Raman scattered photons. These photons are collected to generate a Raman chemical image. A first threshold is applied wherein the first threshold is such that all particles in the sample are detected. A particle in the sample is selected and a second threshold is applied so that at least one geometric property of the selected particle can be determined. At least one spectrum representative of the selected particle is analyzed to determine whether or not it is a particle of interest. The step of determining a second threshold may be iterative and automated via software so that candidate second thresholds are applied until a satisfactory result is achieved.
Abstract:
The present subject matter relates to multivariate optical analysis systems employ multivariate optical elements and utilize multivariate optical computing methods to determine information about a product carried by light reflected from or transmitted through the product. An exemplary method of processing and monitoring the product includes introducing the product at an inspection point; illuminating the product with a spectral-specific light though an optic lens; directing the light that has passed through at least a section of the product through at least one multivariate optical element to produce a first signal, the directed light carrying information about the product; detecting the signal at a detector; and determining at least one property of the product based upon the detector output.
Abstract:
The present disclosure provides for a system and method for assessing chronic exposure of a biological sample, such as a bodily fluid, to an analyte of interest. A biological sample may be illuminated to thereby generate a one or more pluralities of interacted photons. These interacted photons may be detected to thereby generate one or more spectroscopic data sets representative of a biological sample. Spectroscopic data sets generated may be compared to at least one reference data set. Each reference data set may be associated with a known exposure to a known analyte. The present disclosure contemplates that the system and method disclosed herein may be used to analyze exposure of biological samples to at least one analyte over time. Data sets may be obtained at various time intervals to assess changes in a molecular composition as a result of chronic exposure to an analyte.
Abstract:
The present disclosure provides for a system and method for rapid, accurate, and reliable targeting and interrogation of pharmaceutical samples. An autofluorescence image of a sample may be generated and analyzed to identify areas of interest that exhibit autofluorescence characteristic of APIs. These areas of interest may then be targeted for analysis using Raman chemical imaging. This Raman chemical image may be used to determine geometric properties of particles present in a sample such as size and particle distribution.
Abstract:
System and method for spatially and spectrally parallelized FAST. A sample is illuminated to thereby produce interacted photons. The photons are passed through a filter and received at a two-dimensional end of a FAST device wherein said FAST device comprises a two-dimensional array of optical fibers drawn into a one-dimensional fiber stack so as to effectively convert a two-dimensional array of optical fibers into a curvilinear field of view, and wherein said two-dimensional array of optical fibers is configured to receive said photons and transfer said photons out of said fiber array spectral translator device and to a spectrograph through said one-dimensional fiber stack wherein said one-dimensional fiber stack comprises at least two columns of fibers spatially offset in parallel at the entrance slit of said spectrograph. The photons are then detected at a detector to thereby obtain a spectroscopic data set representative of the sample.
Abstract:
A system and method for detecting a contaminant in a sample. The contaminant may comprise melamine or a derivative thereof and the sample may comprise a feed material. The method may comprise illuminating a sample to thereby generate a first plurality of interacted photons, collecting the interacted photons, passing the interacted photons through a tunable filter, and detecting the interacted photons to generate a near infrared data set representative of the sample. This near infrared sample may comprise a hyperspectral near infrared image. The method may further comprise fusing said near infrared data set with a Raman data set representative of sample. A system may comprise an illumination source, one or more collection optics, a tunable filter, and a detector configured to generate a near infrared data set. The system may further comprise a second detector configured for generating a Raman data set representative of a sample.
Abstract:
A system and method for detecting a contaminant in a sample. The contaminant may comprise melamine or a derivative thereof and the sample may comprise a feed material. The method may comprise illuminating a sample to thereby generate a first plurality of interacted photons, collecting the interacted photons, passing the interacted photons through a tunable filter, and detecting the interacted photons to generate a near infrared data set representative of the sample. This near infrared sample may comprise a hyperspectral near infrared image. The method may further comprise fusing said near infrared data set with a Raman data set representative of sample. A system may comprise an illumination source, one or more collection optics, a tunable filter, and a detector configured to generate a near infrared data set. The system may further comprise a second detector configured for generating a Raman data set representative of a sample.
Abstract:
The present disclosure provides for a correction filter that may be configured to comprise a predetermined arrangement of thin film layers. This arrangement of thin film layers may be such that it effectively enables a correction filter to generate a predetermined spectral response, wherein said predetermined spectral response is substantially the same as a determined instrument response correction associated with an instrument. The invention of the present disclosure therefore provides for effectively compensating for transmission inefficiencies associated with an instrument without the need for separate reference measurements to determine and correct for instrument response.
Abstract:
A system and method for hyperspectral imaging to detect hazardous agents including explosive agents. A system comprising a tunable laser, a collection optics, and one or more hyperspectral imaging detectors configured for hyperspectral imaging of a target comprising an unknown material. A method comprising illuminating a target comprising an unknown material via a tunable laser to thereby generate a plurality of interacted photons. Detecting said interacted photons to generate at least one hyperspectral image representative of the target. One or more hyperspectral images may be obtained including SWIR, MWIR, and LWIR hyperspectral images. Algorithms and chemometric techniques may be applied to assess the hyperspectral images to identify the unknown material as comprising an explosive agent or a non-explosive agent. A video imaging device may also be configured to provide a video image of an area of interest, which may be assessed to identify a target for interrogation using hyperspectral imaging.