Abstract:
A computational system can include digital circuitry and analog circuitry, for instance a digital processor and a quantum processor. The quantum processor can operate as a sample generator providing samples. Samples can be employed by the digital processing in implementing various machine learning techniques. For example, the digital processor can operate as a restricted Boltzmann machine. The computational system can operate as a quantum-based deep belief network operating on a training data-set.
Abstract:
Computational systems implement problem solving using heuristic solvers or optimizers. Such may iteratively evaluate a result of processing, and modify the problem or representation thereof before repeating processing on the modified problem, until a termination condition is reached. Heuristic solvers or optimizers may execute on one or more digital processors and/or one or more quantum processors. The system may autonomously select between types of hardware devices and/or types of heuristic optimization algorithms. Such may coordinate or at least partially overlap post-processing operations with processing operations, for instance performing post-processing on an ith batch of samples while generating an (i+1)th batch of samples, e.g., so post-processing operation on the ith batch of samples does not extend in time beyond the generation of the (i+1)th batch of samples. Heuristic optimizers selection is based on pre-processing assessment of the problem, e.g., based on features extracted from the problem and for instance, on predicted success.
Abstract:
Computational techniques for mapping a continuous variable objective function into a discrete variable objective function problem that facilitate determining a solution of the problem via a quantum processor are described. The modified objective function is solved by minimizing the cost of the mapping via an iterative search algorithm.
Abstract:
A hybrid computer comprising a quantum processor can be operated to perform a scalable comparison of high-entropy samplers. Performing a scalable comparison of high-entropy samplers can include comparing entropy and KL divergence of post-processed samplers. A hybrid computer comprising a quantum processor generates samples for machine learning. The quantum processor is trained by matching data statistics to statistics of the quantum processor. The quantum processor is tuned to match moments of the data.
Abstract:
A computational system can include digital circuitry and analog circuitry, for instance a digital processor and a quantum processor. The quantum processor can operate as a sample generator providing samples. Samples can be employed by the digital processing in implementing various machine learning techniques. For example, the digital processor can operate as a restricted Boltzmann machine. The computational system can operate as a quantum-based deep belief network operating on a training data-set.
Abstract:
Methods and systems represent constraint as an Ising model penalty function and a penalty gap associated therewith, the penalty gap separating a set of feasible solutions to the constraint from a set of infeasible solutions to the constraint; and determines the Ising model penalty function subject to the bounds on the programmable parameters imposed by the hardware limitations of the second processor, where the penalty gap exceeds a predetermined threshold greater than zero. Such may be employed to find quantum binary optimization problems and associated gap values employing a variety of techniques.
Abstract:
Quantum processor based techniques minimize an objective function for example by operating the quantum processor as a sample generator providing low-energy samples from a probability distribution with high probability. The probability distribution is shaped to assign relative probabilities to samples based on their corresponding objective function values until the samples converge on a minimum for the objective function. Problems having a number of variables and/or a connectivity between variables that does not match that of the quantum processor may be solved. Interaction with the quantum processor may be via a digital computer. The digital computer stores a hierarchical stack of software modules to facilitate interacting with the quantum processor via various levels of programming environment, from a machine language level up to an end-use applications level.
Abstract:
A digital processor runs a machine learning algorithm in parallel with a sampling server. The sampling sever may continuously or intermittently draw samples for the machine learning algorithm during execution of the machine learning algorithm, for example on a given problem. The sampling server may run in parallel (e.g., concurrently, overlapping, simultaneously) with a quantum processor to draw samples from the quantum processor.
Abstract:
A hybrid computer comprising a quantum processor can be operated to perform a scalable comparison of high-entropy samplers. Performing a scalable comparison of high-entropy samplers can include comparing entropy and KL divergence of post-processed samplers. A hybrid computer comprising a quantum processor generates samples for machine learning. The quantum processor is trained by matching data statistics to statistics of the quantum processor. The quantum processor is tuned to match moments of the data.
Abstract:
The domain adaptation problem is addressed by using the predictions of a trained model over both source and target domain to retain the model with the assistance of an auxiliary model and a modified objective function. Inaccuracy in the model's predictions in the target domain is treated as noise and is reduced by using a robust learning framework during retraining, enabling unsupervised training in the target domain. Applications include object detection models, where noise in retraining is reduced by explicitly representing label noise and geometry noise in the objective function and using the ancillary model to inject information about label noise.