Abstract:
In a power supply apparatus, an upper-arm control unit includes a first switching element connected between a DC power source and a primary side of each upper-arm transformer. The upper-arm control unit controls on and off operations of a first voltage-controlled switching element to control supply of an output voltage of the DC power source to the primary side of each upper-arm transformer. A lower-arm control unit includes a second voltage-controlled switching element connected between the DC power source and a primary side of the at least one lower-arm transformer. The lower-arm control unit controls on and off operations of a second switching element to control supply of the output voltage to the primary side of the at least one lower-arm transformers. Each upper-arm transformer is arranged adjacent to the upper-arm control unit, and the at least one lower-arm transformer is arranged adjacent to the lower-arm control unit.
Abstract:
A circuit control device controlling a switching circuit which has a semiconductor switching element, having a main controller, a drive signal output portion and an obtaining portion. The main controller outputs a drive control signal. The drive signal output portion receives the drive control signal and outputs a drive signal to the switching element, the switching element acting on the basis of the drive signal. The obtaining portion obtains circuit information on status of the switching circuit in synchronization with the drive control signal.
Abstract:
A switching element driver IC has one or more photocouplers, a driver circuit, a detection circuit and a setting circuit. The photocoupler receives setting data transmitted from a microcomputer, and transmits the received setting data to the setting circuit, wherein an input side as a high voltage side is electrically insulated from an output side as a low voltage side in the photocoupler. The setting circuit transmits the setting data to the driver circuit and the detection circuit. The driver circuit and the detection circuit operate on the basis of the received setting data. The setting data can be provided to the driver circuit and the detection circuit through the photocoupler and the setting circuit. This structure makes it possible to suppress increasing the number of terminals at the high voltage side of the switching element driver IC, and decrease the entire size of the switching element driver IC.
Abstract:
A circuit protector includes a plurality of detection lines that connect between a battery pack and a monitoring circuit, an overvoltage protection element connected between the detection lines that keeps the voltage applied to the monitoring circuit at a fixed voltage, and a circuit protection element disposed in each detection line that disconnects an electrical link between the monitoring circuit to and the battery pack when a current beyond a predetermined current value flows into the detection line. When the excess voltage occurs in the battery pack, the overvoltage protection element maintains between each detection line in a short circuit state, and the circuit protection element disconnects the electrical link between the battery pack and the monitoring circuit by a short-circuit current that flows between the detection lines via the overvoltage protection element.
Abstract:
In a driving system for driving a switching element, a controller controls the switching element. A temperature measuring module measures a temperature of the switching element, and output a first signal representing the measured temperature of the switching element as first information. A state determining module determines whether the switching element is in a specified temperature state based on the first signal, and outputs a second signal representing a result of the determination as second information. A communication medium communicably connects between the controller and the state determining module, and the second signal output from the state determining module being transferred to the controller via the communication medium. The controller determines how to drive the switching element based on the second information in the second signal transferred thereto via the communication medium.
Abstract:
A control apparatus controlling a rotating machine includes a signal output unit that outputs an excitation signal to a resolver used for detecting a rotational angle of the rotating machine; a demodulation unit that demodulate a signal related to the rotational angle based on a detection of a modulated signal and the excitation signal so as to output a demodulated signal; a filter that eliminates higher harmonics in the demodulated signal outputted by the demodulation unit so as to output a calculated angle of the rotational angle; and an operating unit that controls a switching element included in a DC-AC conversion circuit to be ON and OFF based on the calculated angle of the rotational angle outputted by the filter, so as to control the rotating machine with an output voltage of the DC-AC conversion circuit supplied to the rotating machine.
Abstract:
An electronic apparatus is provided which includes switching elements, resonance suppression resistors which have first ends connected to control terminals of the switching elements and second ends having a common connection, an on-drive circuit which has an on-drive resistor and is connected to a drive power circuit, and which is supplied with voltage from the drive power circuit and applies electric charge to the control terminals of the switching elements via the on-drive resistor to turn on the switching elements, and an off-drive circuit which has an off-drive resistor and releases electric charge from the control terminals of the switching elements via the off-drive resistor to turn off the switching elements. A resistance of the off-drive resistor is set to be smaller than a resistance of the resonance suppression resistors. The off-drive circuit releases electric charge from the control terminals of the switching elements not via the resonance suppression resistors.
Abstract:
In the invention, a circuit control device controlling a semiconductor switching element having a control terminal and driven by voltage inputted to the control terminal, has an input voltage detector, a desired voltage setting portion and a control input generation portion. The input voltage detector detects inputted voltage to the switching element. The desired voltage setting portion sets a desired value of the voltage to be inputted to the switching element. The control input generation portion is connected to the control terminal of the switching element, the control input generation portion generating control input to the switching element such that the value to be detected by the input voltage detector closes to the set desired value. The desired voltage setting portion sets the desired value of the voltage on the basis of predetermined characteristics information and operating parameters of the switching element. The operating parameters include temperature of the switching element, Vce, Ice etc.
Abstract:
An electronic apparatus includes a switching element which has a control terminal and is driven by controlling voltage of the control terminal, a driving power supply circuit which supplies voltage required for driving the switching element, an on-driving circuit which is connected to the driving power supply circuit and the control terminal of the switching element and is supplied with voltage from the driving power supply circuit, and which applies a constant current to the control terminal of the switching element to charge the control terminal, thereby turning on the switching element, and at least one diode which is connected between the on-driving circuit and the control terminal of the switching element. The on-driving circuit applies a constant current to the control terminal of the switching element through the diode.
Abstract:
In a driver, a clamping module executes a clamping task that clamps an on-off control terminal voltage to be equal to or lower than a clamp voltage for a predetermined time during charging of the on-off control terminal of the switching element. The clamp voltage is lower than an upper limit of the voltage at the on-off control terminal of the switching element. A measuring module measures a parameter value correlated with a sense current correlated with a current flowing between input and output terminals of the switching element. A limiting module discharges the on-off control terminal to limit flow of the current between the input and output terminals if the value of the parameter exceeds a threshold. A setting module variably sets a length of the predetermined time as a function of the parameter value during charging of the switching element's on-off control terminal.