Abstract:
In a control circuit for controlling a power converter that includes a switch, a power supply circuit outputs electrical power, and a command generator generates a switching command that controls switching operations of the switch, based on the electrical power output from the power supply circuit. A failure mode determiner executes a determination of whether which of failure modes has occurred in the power supply circuit, and outputs a result of the determination. A switch controller selectively executes, based on the result of the determination, a first switch control task and a second switch control task. The first switch control task forcibly shuts down the switch independently of the switching command, and the second switch control task enables the switching operations of the switch to be continuously controlled based on the switching command.
Abstract:
An electronic apparatus is provided which includes switching elements, resonance suppression resistors which have first ends connected to control terminals of the switching elements and second ends having a common connection, an on-drive circuit which has an on-drive resistor and is connected to a drive power circuit, and which is supplied with voltage from the drive power circuit and applies electric charge to the control terminals of the switching elements via the on-drive resistor to turn on the switching elements, and an off-drive circuit which has an off-drive resistor and releases electric charge from the control terminals of the switching elements via the off-drive resistor to turn off the switching elements. A resistance of the off-drive resistor is set to be smaller than a resistance of the resonance suppression resistors. The off-drive circuit releases electric charge from the control terminals of the switching elements not via the resonance suppression resistors.
Abstract:
In a driver, a dissipating unit dissipates, upon a potential difference between input and output terminals of a switching element being lower than a predetermined potential, electrical charge for overcurrent detection between the input and output terminals. The dissipating unit includes a rectifier having a pair of first and second conductive terminals. The first conductive terminal is connected to the input terminal of the switching element. An overcurrent determiner determines that an overcurrent flows between the input and output terminals of the switching element upon determination that electrical charge has not been dissipated by the dissipating unit despite the change of the switching element from the off state to the on state. A failure determiner determines whether there is a failure in the dissipating unit as a function of a potential at a point on the first electrical path from the failure determiner to the second conductive terminal.
Abstract:
In a driving device for changing a semiconductor switching element, having an on-off control terminal, between an on state and an off state according to a power supply voltage input thereto, a constant-current driver generates a constant current based on the power supply voltage. The constant-current driver performs one of charging and discharging of the on-off control terminal of the semiconductor switching element based on the generated constant current so as to change the semiconductor switching element from one of the on state and off state to the other thereof. A rate varying unit adjusts, based on correlation information between the power supply voltage and the constant current, a value of the constant current so as to vary a rate of changing the semiconductor switching element from one of the on state and the off state to the other thereof.
Abstract:
A voltage detection device controls operation of system main relays to change an applied voltage supplied to detection circuits. An error of each of the detection circuits is corrected on the basis of a detection value of each of the detection circuits when the applied voltage is changed. In particular, an offset value is corrected on the basis of a detection value of each of the detection circuits when the system main relays and booster switches are controlled so that a voltage of a high voltage battery supplied to each of the detection circuits becomes zero. A gain error is further corrected on the basis of a detection value of each of the detection circuits when the system main relays and the booster switches are controlled so that the applied voltage supplied to each of the detection circuits becomes equal to the voltage of the high voltage battery.
Abstract:
A circuit control device controlling a switching circuit which has a semiconductor switching element, having a main controller, a drive signal output portion and an obtaining portion. The main controller outputs a drive control signal. The drive signal output portion receives the drive control signal and outputs a drive signal to the switching element, the switching element acting on the basis of the drive signal. The obtaining portion obtains circuit information on status of the switching circuit in synchronization with the drive control signal.
Abstract:
In a driving system for driving a switching element, a controller controls the switching element. A temperature measuring module measures a temperature of the switching element, and output a first signal representing the measured temperature of the switching element as first information. A state determining module determines whether the switching element is in a specified temperature state based on the first signal, and outputs a second signal representing a result of the determination as second information. A communication medium communicably connects between the controller and the state determining module, and the second signal output from the state determining module being transferred to the controller via the communication medium. The controller determines how to drive the switching element based on the second information in the second signal transferred thereto via the communication medium.
Abstract:
In a power conversion control apparatus incorporated in a power conversion system for converting a direct current (DC) voltage output from a converter into an alternating current (AC) using an inverter. The power conversion control apparatus includes a converter drive circuit configured to drive the converter, an inverter drive circuit, and a control electronic control unit (ECU). The inverter drive circuit operates a plurality of switching elements forming the inverter at a variably set switching speed. The control ECU outputs to the converter drive circuit an input voltage change command for changing an input voltage command for an input voltage to be output from the converter and input to the inverter. The control ECU outputs to the inverter drive circuit a drive command for driving the plurality of switching elements and a switching speed change command for changing the switching speed for the plurality of switching elements.
Abstract:
In a driver having a reference point with a reference potential for driving a target switching element having an on-off control terminal, a charging path electrically connects the on-off control terminal of the target switching element and a driving power source for charging the on-off control terminal of the target switching element. A bypass path electrically connects the on-off control terminal of the target switching element and the driving power source. A storage has a first conductive end electrically connected to the bypass path and a second conductive end electrically connected to the reference point of the target switching element, and is configured for storing therein charge sent through the bypass path.
Abstract:
In a driving system, an applying module apples, in response to an input of an on or off command as a switching command, a switch signal to a target switching element as a high- or low-side switching element to switch the target switching element to be an on or off state. A measuring module measures a delay period defined as a time interval from a first time to a second time. The first time represents a time at which the switching command is switched from one of the on command and the off command to the other. The second time represents a time at which the target switching element is actually switched to be the on or off state. An adjusting module adjusts, based on the delay period, an input timing of a next switch signal applied from the applying module to the target switching element.