Abstract:
A dual cure system including at least two different and separate types of chemical reactions occurring as the process of the present invention proceeds including, for example, the following two reactions: (1) free radical polymerization of methacrylated or acrylated polyol; and (2) an epoxy-curing agent reaction. The dual cure system of the present invention advantageously provides a first cure reaction of methacrylated or acrylated polyol followed by a second epoxy-curing agent thermoset reaction to form a cured thermoset exhibiting an elongation property of greater than about 5%.
Abstract:
A curable epoxy adhesive composition including (a) at least one first epoxy resin; (b) at least one first diluent; (c) at least one first hardener; (d) at least a first hydrophilic filler that has a predetermined aspect ratio; (e) at least a second hydrophobic filler that is different from the first filler and that has a predetermined aspect ratio; and (f) at least a third filler that is different from the first and second fillers; wherein the third filler has a predetermined aspect ratio higher than the first filler and the second filer; and wherein the volume ratio of the third filler to the combination of the first filler and second filler is in the range of from 1:1 to 10:1 such as to minimize the thermal residual stresses of the cured product made from the curable composition.
Abstract:
Curable compositions, cured compositions, and methods of forming the same, including an epoxy resin, a curing agent, an amphiphilic toughening agent, and an inorganic nanofiller, wherein the toughening agent forms a second phase having at least one dimension being on the nanometer scale.
Abstract:
A monomer treatment process including treating at least one metathesis polymerizable monomer composition having a purity of less than 95 weight percent of a dicyclopentadiene monomer with an alkali metal-containing additive prior to polymerizing the metathesis polymerizable monomer composition such that the treated polymerized monomer exhibits improved properties in metathesis reactions.
Abstract:
Thermosetting epoxy-terminated oxazolidinone ring containing polymers which are obtainable by reacting at least one polyisocyanate compound with at least one hydroxy group containing epoxy resin and/or a combination of at least one epoxy resin and at least one di- or multifunctional nucleophilic compound that is capable of forming crosslinks between epoxy groups. The polymers have an onset glass transition temperature of at least about 45° C. and are capable of showing an onset glass transition temperature in the cured state at least about 160° C. Powder coating compositions comprising these polymers are also disclosed.