摘要:
A process is disclosed for preparing coated catalysts, inter alia, for gas phase oxidations in organic chemistry, comprised of an inert support and a coating of catalyst material enclosing this support, wherein a suspension of the starting material for the coating is sprayed onto an agitated bed of the support, while the suspending medium is being partially removed by a gas stream, and the raw material is then dried and heat-treated. For this purpose, the support bed is mechanically agitated and loosened by a gas stream blown in from below. The catalyst precursor containing a binder and, if appropriate, a pore-former is sprayed in an increasing amount from above onto the bed, the ratio between suspending medium sprayed on and drawn off remaining about constant. The thermal expansion coefficient of the precursor as a dry powder must not deviate by more than 15% from that of the support. The applied coating is densified by continuing the mechanical and fluidizing mixing motion, the material is then dried in a continuing gas stream and heat-treated, if appropriate after decomposition of an added pore-former.
摘要:
A process is disclosed for preparing coated catalysts, inter alia, for gas phase oxidations in organic chemistry, comprised of an inert support and a coating of catalyst material enclosing this support, wherein a suspension of the starting material for the coating is sprayed onto an agitated bed of the support, while the suspending medium is being partially removed by a gas stream, and the raw material is then dried and heat-treated. For this purpose, the support bed is mechanically agitated and loosened by a gas stream blown in from below. The catalyst precursor containing a binder and, if appropriate, a pore-former is sprayed in an increasing amount from above onto the bed, the ratio between suspending medium sprayed on and drawn off remaining about constant. The thermal expansion coefficient of the precursor as a dry powder must not deviate by more than 15% from that of the support. The applied coating is densified by continuing the mechanical and fluidizing mixture motion, the material is then dried in a continuing gas stream and heat-treated, if appropriate after decomposition of an added pore-former.
摘要:
A process is disclosed for preparing coated catalysts, inter alia, for gas phase oxidations in organic chemistry, comprised of an inert support and a coating of catalyst material enclosing this support, wherein a suspension of the starting material for the coating is sprayed onto an agitated bed of the support, while the suspending medium is being partially removed by a gas stream, and the raw material is then dried and heat-treated. For this purpose, the support bed is mechanically agitated and loosened by a gas stream blown in from below. The catalyst precursor containing a binder and, if appropriate, a pore-former is sprayed in an increasing amount from above onto the bed, the ratio between suspending medium sprayed on and drawn off remaining about constant. The thermal expansion coefficient of the precursor as a dry powder must not deviate by more than 15% from that of the support. The applied coating is densified by continuing the mechanical and fluidizing mixing motion, the material is then dried in a continuing gas stream and heat-treated, if appropriate after decomposition of an added pore-former.
摘要:
A process is disclosed for preparing acrolein from propylene and methacrolein from isobutylene or tertiary butanol, by oxidation in oxygen-containing gas mixtures on specially prepared coated catalysts comprised of an inert support and a coating, enclosing this support, of an oxidic catalyst material containing the elements nickel, cobalt, iron, bismuth, phosphorus, molybdenum and tantalum or samarium and, if appropriate, also alkali metal or alkaline earth metal in certain atomic ratios. This coated catalyst is obtained by spraying a suspension of the starting material for the coating, which suspension contains a binder and, if appropriate, a pore-former, from above in an increasing amount onto a bed of the support, which bed is mechanically agitated and loosened up by a gas stream blow in from below, the ratio between suspending medium sprayed on and removed again by the gas stream remaining approximately constant. The thermal expansion coefficient of the precursor as a dry powder must not deviate by more than 15% from the coefficient of the support. The coating is densified by further agitation, and the material is dried in the continuing gas stream and heat-treated, if appropriate after decomposition of an added pore-former.
摘要:
A method of preparation for acetals utilizing saturated or unsaturated aldehydes, in particular, the preparation of dimethylacetals of acetaldehyde, acrolein and methacrolein. The production of the acetal takes place in a liquid phase in the presence of a solid acid catalyst, such as a strongly acidic ion exchange resin or zeolite. The conversion mixture is extracted by means of water and by means of water insoluble organic solvents. There is obtained not only the desired acetals, but in addition also the unconverted initial quantities of the starting materials by a simple method and with very good yields.
摘要:
There is provided a process for the continuous production of pentanediol-1,2 comprising epoxidizing pentene in a completely homogeneous phase with perpropionic acid in benzene to 1-pentene oxide and directly saponifying the pentene oxide-1 without isolation. High yields and a high degree of purity of pentanediol-1,2 are obtained.
摘要:
Crude nicotinamide is purified by a recrystallization and in this way freed especially from nicotinic acid and salts of nicotinic acid. As solvent there is used a 2-methylpropanol-1 containing water. The recrystallization takes place at a pH between about 7 and 10.
摘要:
Process for continuous production of propylene oxide (FIG. 1) from propylene and aqueous hydrogen peroxide. The aqueous hydrogen peroxide is first reacted with propionic acid in the presence of acid catalyst to form perpropionic acid (1). The perpropionic acid is taken up by extraction in benzene (5, 18) and following drying of the benzene solution (21), the perpropionic acid in the solution is reacted with propylene (24) for oxidation of the propylene to propylene oxide and conversion of the perpropionic acid back to propionic acid. The reaction mixture is worked up to separate propylene oxide, propionic acid and benzene (30, 32, 37, 39), and the latter two are recycled. In the benzene extraction (5, 18), an aqueous raffinate (7) is formed containing hydrogen peroxide and acid catalyst. The aqueous raffinate can be divided into a stream which is recycled to the propionic acid reactor (1), and a second stream which can be distilled to remove water with the concentrate being recycled to the propionic acid reactor (1).
摘要:
Process for continuous production of propylene oxide (FIG. 1) from propylene and aqueous hydrogen peroxide. The aqueous hydrogen peroxide is first reacted with propionic acid in the presence of acid catalyst to form perpropionic acid (1). The perpropionic acid is taken up by extraction in benzene (5 , 12), and following drying of the benzene solution (16), the perpropionic acid in the solution is reacted with propylene (18) for oxidation of the propylene to propylene oxide and conversion of the perpropionic acid back to propionic acid. The reaction mixture is worked up to separate propylene oxide, propionic acid and benzene (25, 27, 31, 33), and the latter two are recycled. In the benzene extraction (5, 12), an aqueous raffinate (7) is formed containing hydrogen peroxide and acid catalyst. Water is removed from the aqueous raffinate (8) and the concentrate is recycled to the propionic acid reactor. Make-up hydrogen peroxide can be added to the aqueous raffinate before the removal of water.
摘要:
Process for continuous production of substantially anhydrous solutions of perpropionic acid in benzene. Aqueous hydrogen peroxide is first reacted with propionic acid in the presence of acid catalyst to form perpropionic acid and water (1). The perpropionic acid is extracted with benzene (5), to provide a benzene phase containing the perpropionic acid (11) and an aqueous raffinate (7). The benzene phase is subjected to an extraction with water (12) involving at least 3 stages, to remove hydrogen peroxide, and the resulting benzene extract (15) is subjected to azeotropic distillation (26) to provide the anhydrous solution (17). The aqueous raffinate, which contains hydrogen peroxide, is distilled to remove water (8) and the resulting concentrate is recycled (2) for use in the reaction (1).