摘要:
Process for continuous production of propylene oxide (FIG. 1) from propylene and aqueous hydrogen peroxide. The aqueous hydrogen peroxide is first reacted with propionic acid in the presence of acid catalyst to form perpropionic acid (1). The perpropionic acid is taken up by extraction in benzene (5, 18) and following drying of the benzene solution (21), the perpropionic acid in the solution is reacted with propylene (24) for oxidation of the propylene to propylene oxide and conversion of the perpropionic acid back to propionic acid. The reaction mixture is worked up to separate propylene oxide, propionic acid and benzene (30, 32, 37, 39), and the latter two are recycled. In the benzene extraction (5, 18), an aqueous raffinate (7) is formed containing hydrogen peroxide and acid catalyst. The aqueous raffinate can be divided into a stream which is recycled to the propionic acid reactor (1), and a second stream which can be distilled to remove water with the concentrate being recycled to the propionic acid reactor. (1)
摘要:
Process for continuous production of propylene oxide (FIG. 1) from propylene and aqueous hydrogen peroxide. The aqueous hydrogen peroxide is first reacted with propionic acid in the presence of acid catalyst to form perpropionic acid (1). The perpropionic acid is taken up by extraction in benzene (5 , 12), and following drying of the benzene solution (16), the perpropionic acid in the solution is reacted with propylene (18) for oxidation of the propylene to propylene oxide and conversion of the perpropionic acid back to propionic acid. The reaction mixture is worked up to separate propylene oxide, propionic acid and benzene (25, 27, 31, 33), and the latter two are recycled. In the benzene extraction (5, 12), an aqueous raffinate (7) is formed containing hydrogen peroxide and acid catalyst. Water is removed from the aqueous raffinate (8) and the concentrate is recycled to the propionic acid reactor. Make-up hydrogen peroxide can be added to the aqueous raffinate before the removal of water.
摘要:
Process for continuous production of substantially anhydrous solutions of perpropionic acid in benzene. Aqueous hydrogen peroxide is first reacted with propionic acid in the presence of acid catalyst to form perpropionic acid and water (1). The perpropionic acid is extracted with benzene (5), to provide a benzene phase containing the perpropionic acid (11) and an aqueous raffinate (7). The benzene phase is subjected to an extraction with water (12) involving at least 3 stages, to remove hydrogen peroxide, and the resulting benzene extract (15) is subjected to azeotropic distillation (26) to provide the anhydrous solution (17). The aqueous raffinate, which contains hydrogen peroxide, is distilled to remove water (8) and the resulting concentrate is recycled (2) for use in the reaction (1).
摘要:
Process for continuous production of propylene oxide (FIG. 1) from propylene and aqueous hydrogen peroxide. The aqueous hydrogen peroxide is first reacted with propionic acid in the presence of acid catalyst to form perpropionic acid (1). The perpropionic acid is taken up by extraction in benzene (5, 18) and following drying of the benzene solution (21), the perpropionic acid in the solution is reacted with propylene (24) for oxidation of the propylene to propylene oxide and conversion of the perpropionic acid back to propionic acid. The reaction mixture is worked up to separate propylene oxide, propionic acid and benzene (30, 32, 37, 39), and the latter two are recycled. In the benzene extraction (5, 18), an aqueous raffinate (7) is formed containing hydrogen peroxide and acid catalyst. The aqueous raffinate can be divided into a stream which is recycled to the propionic acid reactor (1), and a second stream which can be distilled to remove water with the concentrate being recycled to the propionic acid reactor (1).
摘要:
Process for the continuous preparation of organic solutions of percarboxylic acids by reaction of aqueous hydrogen peroxide with the corresponding carboxylic acid in the presence of an acid, water-soluble catalyst, extraction of the resulting reaction mixture with an organic solvent and recycle of the raffinate, containing hydrogen peroxide, after reconcentration by the removal of water by distillation into the reaction. The raffinate is fed, together with the whole of that amount of hydrogen peroxide which essentially to the consumption of hydrogen peroxide in the reaction or with a part thereof, into the distillation for the removal of water. The amount of water which essentially corresponds to the sum of the water of reaction formed during the reaction and the water introduced into the process with the feed products is distilled off under reduced pressure. The sump product, thus obtainable, from the distillation is recycled into the reaction.
摘要:
In the production of perpropionic acid by reaction of hydrogen peroxide and propionic acid in an aqueous medium and in the presence of an acid catalyst, e.g. sulfuric acid, to produce the peracid and water, the danger of explosion is reduced by employing a molar ratio of hydrogen peroxide to propionic acid of more than 3.5:1, a temperature of up to 60.degree. C., and an initial hydrogen peroxide:water ratio of up to 0.8, and a catalyst concentration of 10-40% by weight.
摘要:
In the production of perpropionic acid by reaction of hydrogen peroxide and propionic acid in an aqueous medium and in the presence of an acid catalyst, e.g. sulfuric acid, to produce the peracid and water, the danger of explosion is reduced by employing a molar ratio of hydrogen peroxide to propionic acid of less than 1.4:1, a temperature of up to 60.degree. C, and an initial hydrogen peroxide:water ratio of up to 1.2, and a catalyst concentration of 10-40% of weight.
摘要:
Pure racemic acid (dl-tartaric acid) and meso tartaric acid are produced by reaction of an alkali maleate with aqueous hydrogen peroxide in the presence of a catalyst which is an alkali molybdate or a mixture of an alkali molybdate and alkali tungstate in a process wherein the molar ratio of hydrogen peroxide to maleic acid is greater than 1:1 and the alkali salt of cis-epoxysuccinic acid formed together with the catalyst in a given case after destroying the excess hydrogen peroxide and other peroxygen compounds, are converted to free cis-epoxysuccinic acid and free molybdic acid or mixture of free molybdic acid and free tungstic acid by leading them over a strongly acidic cation exchanger, whereupon the hydrolysis of the free cis-epoxysuccinic acid to racemic acid and meso-tartaric acid can take place either in the presence of or the absence of the free molybdic acid or mixture of free molybdic acid and free tungstic acid, whereby the catalyst in the case of catalyst free hydrolysis before, and in the case of catalyst containing hydrolysis after this hydrolysis is removed with an anion exchanger and the racemic acid is then in known manner crystallized out of the catalyst free hydrolysis mixture by lowering the temperature in a given case with evaporation of water, whereupon the meso-tartaric acid remains in the mother liquor, and there is recovered from the mother liquor either by crystallization or by evaporation to dryness, in a given case in admixture with racemic acid, unreacted cis-epoxysuccinic acid and maleic acid, while the anion exchanger laden with the molybdic acid or mixture of molybdic acid and tungstic acid is regenerated in known manner with dilute aqueous alkali and, in a given case, the resulting solution of alkali molybdate or mixture of alkali molybdate and alkali tungstate, eventually after treatment with activated carbon is returned directly into the epoxidation step.
摘要:
Pure racemic acid (dl-tartaric acid) and meso tartaric acid are produced by reaction of an alkali maleate with aqueous hydrogen peroxide in the presence of an alkali tungstate in a process wherein the molar ratio of hydrogen peroxide to maleic acid is greater than 1:1 and the alkali salt of cis-epoxysuccinic acid formed together with the alkali tungstate, in a given case after destroying the excess hydrogen peroxide, are converted to free cis-epoxysuccinic acid and free tungstic acid by leading them over a strongly acidic cation exchanger, whereupon the hydrolysis of the free cis-epoxysuccinic acid to racemic acid and meso-tartaric acid can take place either in the presence of or the absence of the free tungstic acid, whereby the tungstic acid in the case of catalyst free hydrolysis before, and in the case of catalyst containing hydrolysis after this hydrolysis is removed with an anion exchanger and the racemic acid is then in known manner crystallized out of the tungstic acid free hydrolysis mixture by lowering the temperature in a given case with evaporation of water, whereupon the meso-tartaric acid remains in the mother liquor, and there is recovered from the mother liquor either by crystallization or by evaporation to dryness, in a given case in admixture with racemic acid, unreacted cis-epoxysuccinic acid and maleic acid, while the anion exchanger laden with the tungstic acid is regenerated in known manner with dilute aqueous alkali and, in a given case, the resulting solution of alkali tungstate, eventually after treatment with activated carbon is returned directly into the epoxidation step.There is also disclosed a process for the separation of maleic acid from synthetic tartaric acid containing maleic acid in which an aqueous solution of the crude tartaric acid which can also still contain the catalyst used, is led over a basic anion exchanger which is present in the hydroxyl or tartrate form.
摘要:
There is provided a process for the continuous production of pentanediol-1,2 comprising epoxidizing pentene in a completely homogeneous phase with perpropionic acid in benzene to 1-pentene oxide and directly saponifying the pentene oxide-1 without isolation. High yields and a high degree of purity of pentanediol-1,2 are obtained.