Abstract:
Disclosed herein are gemini surfactants, and methods for making and using these gemini surfactants. These gemini surfactants may be incorporated in paints and coatings to provide hydrophilic and/or self-cleaning properties.
Abstract:
Disclosed herein are hydrophilic microfibers and hydrophilic nanofibers, and methods for making these hydrophilic microfibers and nanofibers. The hydrophilic microfibers and/or nanofibers provide hydrophilic and/or self-cleaning properties when incorporated in paints and coatings.
Abstract:
Hydrophilic, self-cleaning coating compositions and methods to make and use the compositions are disclosed. The coatings comprise perlite and/or expanded perlite that are activated with hydrophilic agents. The perlites when incorporated in paints provide hydrophilic, self-cleaning and/or biocidal property to the coating.
Abstract:
Ice phobic coatings and substrates and methods of making and using them are described. Some embodiments provide for an ice-phobic coating including a hydrophobic entity bonded to a hydrophilic moiety, wherein the hydrophilic moiety is capable of lowering a freezing point of water. Some embodiments provide for an ice-phobic article including a substrate having the ice-phobic coating applied on the substrate. In some embodiments, a method of making an ice-phobic coating may include bonding the hydrophobic entity with the hydrophilic moiety. In some embodiments, a method of making an ice-phobic article includes applying the ice-phobic coating to a substrate. Some embodiments also provide for a kit for making an ice-phobic article. Such ice-phobic coatings may be used to coat or impregnate winter equipment, cloth, shoes, sporting equipment, road signs, traffic lights, sidewalks, aircrafts, vehicles, or the like.
Abstract:
Methods of producing graphene, reaction chambers for forming graphene, and graphene sheets formed from the methods are described herein. A method may include adding at least one metal catalyst in a reaction chamber, adding at least one hydrocarbon gas in the reaction chamber, allowing the at least one metal catalyst and the at least one hydrocarbon gas to contact one another to produce a product, and dehydrogenating the product to produce the graphene.