Abstract:
A three-dimensional (3D) measuring device includes a cooling fan and an enclosure attached to a projector and a camera. The camera images a pattern of light projected by the projector onto an object to determine 3D coordinates points on the object. A fan draws air through an opening in the front of the enclosure, across a plurality of components in the enclosure and out a second opening in the enclosure.
Abstract:
A computer numerical control (CNC) machining center is provided. The CNC machining center includes a spindle that receives a cutting tool. A work surface is operably arranged adjacent the spindle. A non-contact three-dimensional (3D) measurement device is operably coupled to the tool mount, the 3D measurement device including a projector and at least one device camera, the at least one camera being arranged to receive light from the light source that is reflected off of a surface. A plurality of targets is provided with at least one of the targets coupled to the 3D measurement device. At least two photogrammetry cameras are provided having a orientation and a field of view to acquire images of the targets. A controller is coupled for communication to the 3D measurement device and the at least two cameras, the controller determining the position of the 3D measurement device within the machining center during operation.
Abstract:
A computer numerical control (CNC) machining center is provided. The CNC machining center includes a spindle that receives a cutting tool. A work surface is operably arranged adjacent the spindle. A non-contact three-dimensional (3D) measurement device is operably coupled to the tool mount, the 3D measurement device including a projector and at least one device camera, the at least one camera being arranged to receive light from the light source that is reflected off of a surface. A plurality of targets is provided with at least one of the targets coupled to the 3D measurement device. At least two photogrammetry cameras are provided having a orientation and a field of view to acquire images of the targets. A controller is coupled for communication to the 3D measurement device and the at least two cameras, the controller determining the position of the 3D measurement device within the machining center during operation.
Abstract:
A computer numerical control (CNC) machining center is provided. The CNC machining center includes a spindle that receives a cutting tool. A work surface is operably arranged adjacent the spindle. A non-contact three-dimensional (3D) measurement device is operably coupled to the tool mount, the 3D measurement device including a projector and at least one device camera, the at least one camera being arranged to receive light from the light source that is reflected off of a surface. A plurality of targets is provided with at least one of the targets coupled to the 3D measurement device. At least two photogrammetry cameras are provided having a orientation and a field of view to acquire images of the targets. A controller is coupled for communication to the 3D measurement device and the at least two cameras, the controller determining the position of the 3D measurement device within the machining center during operation.
Abstract:
A noncontact optical three-dimensional measuring device that includes a projector, a first camera, and a second camera; a processor electrically coupled to the projector, the first camera and the second camera; and computer readable media which, when executed by the processor, causes the first digital signal to be collected at a first time and the second digital signal to be collected at a second time different than the first time and determines three-dimensional coordinates of a first point on the surface based at least in part on the first digital signal and the first distance and determines three-dimensional coordinates of a second point on the surface based at least in part on the second digital signal and the second distance.
Abstract:
An assembly that includes a projector and camera is used with a processor to determine three-dimensional (3D) coordinates of an object surface. The processor fits collected 3D coordinates to a mathematical representation provided for a shape of a surface feature. The processor fits the measured 3D coordinates to the shape and, if the goodness of fit is not acceptable, selects and performs at least one of: changing a pose of the assembly, changing an illumination level of the light source, changing a pattern of the transmitted With the changes in place, another scan is made to obtain 3D coordinates.
Abstract:
A system and method for coordinate measurement is provided. The system includes a laser tracker and a moveable articulated-arm coordinate measuring machine (AACMM). The AACMM has an articulated arm with a probe end and an actuator. A retroreflector is coupled to the probe end. When the AACMM is in a first position, the system emits a laser beam and measures a position of the retroreflector while the AACMM also measures the position of retroreflector. When the AACMM is in a second position, and based on an activation of the at least one actuator by an operator, the system transmits a signal from the AACMM to the laser tracker and rotates the laser tracker towards the second position in response to the laser tracker receiving the signal. A means for transforming the first or second coordinate system to a common coordinate frame of reference is provided.
Abstract:
A triangulation-type, three-dimensional imager device uses photogrammetry to provide alignment or registration of the multiple point clouds of an object generated by the imager. The imager does not need a calibrated artifact such as a scale bar in its use of the photogrammetry process but instead uses the point cloud data generated by the imager to set the scale required by and utilized in the photogrammetry process.
Abstract:
A three-dimensional (3D) measuring device includes a cooling fan and an enclosure attached to a projector and a camera. The camera images a pattern of light projected by the projector onto an object to determine 3D coordinates points on the object. A fan draws air through an opening in the front of the enclosure, across a plurality of components in the enclosure and out a second opening in the enclosure.