Abstract:
A photovoltaic device includes a substrate structure and at least one Se-containing layer, such as a CdSeTe layer. A process for manufacturing the photovoltaic device includes forming the CdSeTe layer over a substrate by at least one of sputtering, evaporation deposition, CVD, chemical bath deposition process, and vapor transport deposition process. The process can also include controlling a thickness range of the Se-containing layer.
Abstract:
A photovoltaic device includes a substrate structure and at least one Se-containing layer, such as a CdSeTe layer. A process for manufacturing the photovoltaic device includes forming the CdSeTe layer over a substrate by at least one of sputtering, evaporation deposition, CVD, chemical bath deposition process, and vapor transport deposition process. The process can also include controlling a thickness range of the Se-containing layer.
Abstract:
A photovoltaic device includes a substrate structure and at least one Se-containing layer, such as a CdSeTe layer. A process for manufacturing the photovoltaic device includes forming the CdSeTe layer over a substrate by at least one of sputtering, evaporation deposition, CVD, chemical bath deposition process, and vapor transport deposition process. The process can also include controlling a thickness range of the Se-containing layer.
Abstract:
A method for annealing an absorber layer is disclosed, the method including contacting a surface of the absorber layer with an annealing material provided as a gel. The annealing material comprises cadmium chloride and a thickening agent. A viscosity of the gel of the annealing material is greater than or equal to 5 millipascal seconds.
Abstract:
A photovoltaic device includes a substrate structure and at least one Se-containing layer, such as a CdSeTe layer. A process for manufacturing the photovoltaic device includes forming the CdSeTe layer over a substrate by at least one of sputtering, evaporation deposition, CVD, chemical bath deposition process, and vapor transport deposition process. The process can also include controlling a thickness range of the Se-containing layer.
Abstract:
A photovoltaic device includes a substrate structure and at least one Se-containing layer, such as a CdSeTe layer. A process for manufacturing the photovoltaic device includes forming the CdSeTe layer over a substrate by at least one of sputtering, evaporation deposition, CVD, chemical bath deposition process, and vapor transport deposition process. The process can also include controlling a thickness range of the Se-containing layer.
Abstract:
A method for annealing an absorber layer is disclosed, the method including contacting a surface of the absorber layer with an annealing material provided as a gel. The annealing material comprises cadmium chloride and a thickening agent. A viscosity of the gel of the annealing material is greater than or equal to 5 millipascal seconds.
Abstract:
A photovoltaic device includes a substrate structure and at least one Se-containing layer, such as a CdSeTe layer. A process for manufacturing the photovoltaic device includes forming the CdSeTe layer over a substrate by at least one of sputtering, evaporation deposition, CVD, chemical bath deposition process, and vapor transport deposition process. The process can also include controlling a thickness range of the Se-containing layer.
Abstract:
A photovoltaic device includes a substrate structure and at least one Se-containing layer, such as a CdSeTe layer. A process for manufacturing the photovoltaic device includes forming the CdSeTe layer over a substrate by at least one of sputtering, evaporation deposition, CVD, chemical bath deposition process, and vapor transport deposition process. The process can also include controlling a thickness range of the Se-containing layer.
Abstract:
A method and system for real-time, in-line measurements of thicknesses of semiconductor layers of photovoltaic devices is provided. The method and system include taking ex-situ optical data measurements after deposition of the semiconductor layers. The measurements are then used to calculate the thicknesses of the layers in real-time using optical modeling software.