Abstract:
A method for controlling operation of an electric power generation system includes receiving power generator data corresponding to the electric power generation system. The method further includes receiving, using a digital prime mover unit, a set-point parameter corresponding to a prime mover unit and generating one or more prime mover parameter estimates corresponding to the plurality of prime mover parameters. Further, the method includes receiving, using a digital generator unit, one or more prime mover parameter estimates and generating one or more generator parameter estimates corresponding to the plurality of generator parameters. The digital prime mover unit and the digital generator unit are real-time operational models of the prime mover unit and the generator unit. The method also includes controlling the operation of the electric power generation system based on at least one or more of the power generator data, the prime mover parameter estimates, and the generator parameter estimates.
Abstract:
The present disclosure relates to gas turbine engine operation in which an igniter assembly is provided with an electrical energy input (e.g., an electrical waveform) that is configured to increase a likelihood of igniting a fuel-air mixture surrounding the igniter assembly. In certain embodiments, the igniter assembly is supplied with an augmented electrical waveform that may reduce a quantity of sparks generated by the igniter assembly before successful light-off (e.g., ignition) of the fuel-air mixture is achieved (e.g., as compared to a quantity of sparks generated to achieve ignition by an igniter assembly that receives an electrical energy input in the form of a conventional electrical waveform). Accordingly, the augmented electrical waveform may reduce wear (e.g., via oxidation) on electrodes of the igniter assembly, such as a primary electrode (e.g., a center electrode) and a secondary electrode (e.g., an outer shell electrode) disposed about the primary electrode.
Abstract:
Systems and methods are disclosed for on-line monitoring of the condition of the stator insulation of an AC motor or an electric generator. In certain embodiments, the system includes a transformer surrounding each pair of input and output cables associated with a given phase of power provided to the AC motor or generated by the electric generator. In another embodiment, a transformer surrounds the three input cables (for an AC motor) or the three output cables (for an electric generator) that correspond to phases of the AC motor or electric generator. In both embodiments, the transformers generate voltages that may be used to monitor leakage currents associated with the cables. A microcontroller monitors the voltages generated by the transformers and determines the condition of the stator insulation of the AC motor or the electric generator based on the voltages.
Abstract:
A cable that includes a conductor defining a hollow interior, a casing surrounding the conductor, an electrical insulator positioned between the conductor and the casing, and a fluid positioned within the hollow interior of the conductor.
Abstract:
A combustor for a gas turbine system includes a combustor casing having an interior-establishing wall, and a chamber extending to the interior-establishing wall. In addition, the combustor includes an igniter assembly disposed within the chamber such that a tip of the igniter assembly is positioned radially outwardly from the interior-establishing wall. The igniter assembly includes a first electrode, a second electrode, and an insulator. In addition, the first electrode, the second electrode, and the insulator form a cavity, the second electrode forms an outlet passage extending from the cavity, a maximum cross-sectional area of the cavity is greater than a minimum cross-sectional area of the outlet passage, and the first electrode and the second electrode are configured to ionize gas within the cavity in response to an electrical current applied to the first electrode or to the second electrode.
Abstract:
Systems and methods are disclosed for on-line monitoring of the condition of insulation in electrical devices employing a differential current sensor. In certain embodiments a monitor that can be fitted to existing electrical devices by attachment of the sensor to a pair of phase cables is provided. In other embodiments, an electrical device configured with an insulation monitor is provided.
Abstract:
Embodiments of the present disclosure relate to a spark gap device that includes a first electrode having a first surface and a second electrode having a second surface offset from and facing the first surface. The spark gap device also includes a cantilevered component coupled to the first electrode that is configured to generate a field emission, a corona discharge or both, to emit light toward at least the first surface such that photons are incident on the first surface and cause electron emission from the first surface. The spark gap device may not include a radioactive component.
Abstract:
A monitoring system includes a capacitor can having one or more capacitors. The monitoring system includes an antenna. The monitoring system includes at least one sensor disposed within the capacitor can and configured to detect an operating characteristic associated with health of the one or more capacitors of the capacitor can. The monitoring system includes a processor configured to receive a first signal from the at least one sensor indicative of the operating characteristic. The processor is configured to send a second signal, via the antenna, indicative of a value of the operating characteristic to a receiving device outside of the capacitor can.
Abstract:
Methods and systems detect short circuits in an electrical system, such as a dynamic braking grid of a vehicle. The methods and system measure a characteristic of a current that is conducted through one or more resistive elements of an electrical system. The current is supplied to the electrical system from a power source as an applied voltage. A resistance change signal representative of a change in one or more electrical resistances of the one or more resistive elements is determined The resistance change signal can be based at least in part on a difference between the characteristic of the current that is measured and a low pass filtered value of one or more of the characteristic of the current that is measured or the applied voltage supplied by the power source. A short circuit event is identified based at least in part on the resistance change signal.
Abstract:
Systems and methods are disclosed for calibration and compensation of on-line current transformers. In certain embodiments, a method to calibrate a single current transformer by use of an AC injected current is provided. In other embodiments, a method to calibrate and compensate multiple current transformers using a single AC injected current is provided. In further embodiments, a system for calibration and compensation of multiple current transformers is provided. The adequate frequency of the injected current as well as other characteristics for adequate use in some embodiments is provided.