Abstract:
A method for controlling operation of transformer system includes receiving, by a controller unit, transformer data corresponding to a transformer. The transformer data includes a plurality of transformer input parameters and a plurality of transformer output parameters. The method further includes receiving, by a digital transformer unit, the plurality of transformer input parameters from the controller unit. The digital transformer unit is a real-time operational model of the transformer. The method also includes generating, by the digital transformer unit, a plurality of transformer output parameter estimates corresponding to the plurality of transformer output parameters. The method further includes controlling operation of the transformer, by the controller unit, based on at least one of the transformer data and the plurality of transformer output parameter estimates.
Abstract:
A method of controlling operation of a motor drive system includes receiving motor drive data corresponding to a variable frequency drive. The motor drive data includes a plurality of frequency drive input parameters and a plurality of frequency drive output parameters. The method further includes receiving, by a digital variable frequency drive unit, the plurality of frequency drive input parameters. The digital variable frequency drive unit is a real-time operational model of the variable frequency drive. The method further includes generating, by the digital variable frequency drive unit, frequency drive output parameter estimates corresponding to the plurality of frequency drive output parameters. The method also includes controlling operation of the variable frequency drive based on the one or more of the motor drive data, and the frequency drive output parameter estimates.
Abstract:
A fault detection system for a wind turbine includes a doubly-fed induction generator (DFIG). The DFIG includes a wye-ring configured for at least three electrical phases. The fault detection system includes a data acquisition system including at least three sensors. Each sensor of said at least three sensors is configured to electrically couple with and measure a respective voltage of each phase of the at least three electrical phases of the wye-ring. The fault detection system further includes an alert system coupled to said data acquisition system. The alert system is configured to apply a Fourier transform to the respective measured voltages of each phase of the at least three electrical phases of the wye-ring. The alert system is further configured to provide an indication of a condition of the wye-ring based upon the transformed measured voltages.
Abstract:
A method implemented using a controller based device includes receiving a measured electrical signal from an electrical device of an electromechanical device and receiving a measured vibration signal from a mechanical device of the electromechanical device, coupled to the electrical device. The method further includes determining a first signal signature based on the measured electrical signal and determining a second signal signature based on the measured vibration signal. The method also includes determining a diagnostic parameter based on the first signal signature and the second signal signature and determining a fault in the mechanical device based on the diagnostic parameter.
Abstract:
Systems and methods are disclosed for on-line monitoring of the condition of the stator insulation of an AC motor or an electric generator. In certain embodiments, the system includes a transformer surrounding each pair of input and output cables associated with a given phase of power provided to the AC motor or generated by the electric generator. In another embodiment, a transformer surrounds the three input cables (for an AC motor) or the three output cables (for an electric generator) that correspond to phases of the AC motor or electric generator. In both embodiments, the transformers generate voltages that may be used to monitor leakage currents associated with the cables. A microcontroller monitors the voltages generated by the transformers and determines the condition of the stator insulation of the AC motor or the electric generator based on the voltages.
Abstract:
A method implemented using a processor based device includes obtaining a measured electrical signal from an electrical device coupled to a mechanical device and generating a signal signature representative of a fault in the mechanical device based on the measured electrical signal. The method also includes determining a diagnostic parameter based on a harmonic frequency of the signal signature and determining the fault in the mechanical device based on the diagnostic parameter.
Abstract:
A method of controlling an electric motor assembly includes receiving sensor feedback that is based at least in part on electrical properties of a variable frequency power signal provided to the electric motor assembly. The method also includes adjusting the phase angle of the variable frequency power signal provided to the electric motor assembly based at least in part on the sensor feedback. The method also includes determining an operational status of the electric motor assembly that receives the variable frequency power signal based at least in part on the sensor feedback.
Abstract:
Systems and methods are disclosed for on-line monitoring of the condition of insulation in electrical devices employing a differential current sensor. In certain embodiments a monitor that can be fitted to existing electrical devices by attachment of the sensor to a pair of phase cables is provided. In other embodiments, an electrical device configured with an insulation monitor is provided.
Abstract:
Systems and methods are disclosed for calibration and compensation of on-line current transformers. In certain embodiments, a method to calibrate a single current transformer by use of an AC injected current is provided. In other embodiments, a method to calibrate and compensate multiple current transformers using a single AC injected current is provided. In further embodiments, a system for calibration and compensation of multiple current transformers is provided. The adequate frequency of the injected current as well as other characteristics for adequate use in some embodiments is provided.
Abstract:
A system including a non-intrusive capacitive voltage sensor configured to couple to an insulator surrounding a metal conductor, wherein the non-intrusive capacitive voltage sensor is configured to produce a voltage signal indicative of a voltage in the metal conductor, and a monitor-controller system configured to receive the voltage signal from the non-intrusive capacitive voltage sensor, wherein the monitor-controller system is configured to use the voltage signal to monitor or control a machine.