Abstract:
A system includes a control system. The control system includes a processor configured to receive a first signal from a light source within an industrial facility. The first signal includes a unique identification code configured to indicate at least a partial identity of a human resource within the industrial facility. The processor is configured to determine a proximity of the human resource with respect to the light source based at least in part on a received signal strength indicator (RSSI) of the first signal, and to generate an indication of a location of the human resource within the industrial facility based on the determined proximity of the human resource to the light source.
Abstract:
A system for inductively communicating signals in a magnetic resonance imaging system is presented. The system includes first array of primary coils configured to acquire data from a patient positioned on a patient cradle. Furthermore, the system includes a second array of secondary coils operatively coupled to the first array of primary coils. Moreover, the system includes a third array of tertiary coils disposed at a determined distance from the second array of secondary coils. In addition, the system includes a tuning unit operatively coupled to the third array of tertiary coils by a cable having a quarter-wave electrical wavelength and configured to control the first array of primary coils through impedance transformation, where the second array of secondary coils is configured to inductively communicate the acquired data to the third array of tertiary coils.
Abstract:
A system includes a multi-nuclear magnetic resonance (MR) receiving coil, wherein the receiving coil includes a frequency tuning component configured operate the receiving coil at either a first frequency or a second frequency. The receiving coil also includes an impedance matching component configured to maintain a substantially constant impedance of the receiving coil when the receiving coil is operated at either the first frequency or the second frequency. Furthermore, the receiving coil is configured to measure a first nucleus when operated at the first frequency, and wherein the receiving coil is configured to measure a second nucleus when operated at the second frequency.
Abstract:
An engine monitoring system for an aircraft engine having a nacelle extending annularly thereabout and a sensor positioned radially inward therefrom. The system includes an engine control device coupled communicatively to the sensor and configured to receive engine data from the sensor and/or receive instruction data from a transmitter device positioned radially outward from a nacelle radially outward surface. The system also includes a composite panel including at least a portion of the nacelle and a ground plane positioned radially inward from the nacelle radially outward surface, the composite panel including an antenna coupled communicatively to engine control device and a radome positioned radially outward from ground plane. The antenna is configured to at least one of receive engine data from the engine control device and transmit engine data to a receiver device, and receive instruction data from the transmitter device and transmit instruction data to the engine control device.
Abstract:
A system includes a multi-nuclear magnetic resonance (MR) receiving coil, wherein the receiving coil includes a frequency tuning component configured operate the receiving coil at either a first frequency or a second frequency. The receiving coil also includes an impedance matching component configured to maintain a substantially constant impedance of the receiving coil when the receiving coil is operated at either the first frequency or the second frequency. Furthermore, the receiving coil is configured to measure a first nucleus when operated at the first frequency, and wherein the receiving coil is configured to measure a second nucleus when operated at the second frequency.
Abstract:
A system includes a capacitor unit having one or more capacitors within a body of the capacitor unit, wherein the capacitor unit comprises at least two bushings. The system includes a monitoring system having a first antenna. The monitoring system is configured to couple to the at least two bushings to form a resonant frequency (LC) circuit having a capacitance based at least in part on an effective capacitance of the capacitor unit. The monitoring system is configured to send a first signal to a radio frequency (RF) reader at a frequency based at least in part on the effective capacitance of the capacitor unit via the first antenna. The first signal is associated with health of the capacitor unit.
Abstract:
Systems and methods for determining electrical properties using Magnetic Resonance Imaging (MRI) are provided. One method includes applying an ultra-short echo time (TE) pulse sequence in a Magnetic Resonance Imaging (MRI) system and acquiring a complex B1+B1− quantity from an object following the application of the ultra-short TE pulse sequence, where B1+ is a complex amplitude of a transmit radio-frequency (RF) magnetic field and B1− is a complex amplitude of a receive RF magnetic field. The method also includes estimating, with a processor, one or more electrical properties of the object using the complex amplitudes of the transmit RF magnetic field and the receive RF magnetic field.
Abstract:
Exemplary embodiments of the present disclosure are directed to estimating an electrical property of tissue using MR images. Complex values having real components and imaginary components are generated and are associated with pixels in one or more MR images that corresponding to a region of tissue for which the electrical property is constant. An estimated value of the electrical property for the region of tissue is determined based on a least squared error estimation applied to the complex values.
Abstract:
A system for inductively communicating signals in a magnetic resonance imaging system is presented. The system includes first array of primary coils configured to acquire data from a patient positioned on a patient cradle. Furthermore, the system includes a second array of secondary coils operatively coupled to the first array of primary coils. Moreover, the system includes a third array of tertiary coils disposed at a determined distance from the second array of secondary coils. In addition, the system includes a tuning unit operatively coupled to the third array of tertiary coils by a cable having a quarter-wave electrical wavelength and configured to control the first array of primary coils through impedance transformation, where the second array of secondary coils is configured to inductively communicate the acquired data to the third array of tertiary coils.
Abstract:
An engine communication system for aircraft engines having a nacelle with two cowlings extending annularly about the aircraft engine and defining a radially outward surface thereof, and at least one sensor positioned radially inward from the nacelle. The system includes a cowling gap positioned between the two cowlings when coupled together, and an engine control device communicatively coupled to the sensor and configured to at least one of receive engine data from the sensor and receive instruction data from a transmitter device positioned radially outward from the cowling gap. The system also includes a linearly polarized antenna communicatively coupled to the engine control device and positioned radially inward from the cowling gap and extending radially outward toward the cowling gap. The antenna is configured to at least one of receive and transmit the engine data and the instruction data through the cowling gap.