Abstract:
A system includes a control system. The control system includes a processor configured to receive a first signal from a light source within an industrial facility. The first signal includes a unique identification code configured to indicate at least a partial identity of a human resource within the industrial facility. The processor is configured to determine a proximity of the human resource with respect to the light source based at least in part on a received signal strength indicator (RSSI) of the first signal, and to generate an indication of a location of the human resource within the industrial facility based on the determined proximity of the human resource to the light source.
Abstract:
The present disclosure relates to a system includes a Luneburg lens antenna system configured to selectively provide wireless communication to a plurality of stations, and one or more sensors configured to collect data related to an occupancy status of each of the plurality of stations. The system also includes a controller coupled to the Luneburg lens antenna system and the one or more sensors, wherein the controller is configured to determine the occupancy status of each of the plurality of stations based on the data collected by the one or more sensors, and the controller is further configured to change operation of the Luneburg lens antenna system based on the occupancy status of each of the plurality of stations.
Abstract:
A position tracking system includes one or more beacon transmitters and one or more beacon receiver systems configured to be disposed on an object. Each of the one or more beacon receiver systems includes one or more photodetectors configured to receive signals from the one or more beacon transmitters, and an analog-to-digital convertor to convert analog signals received by the one or more photodetectors to digital signals. Each of the one or more beacon receiver systems also includes a memory and a processor configured to execute instructions stored on the memory. The instructions includes receiving signals collected by the one or more photodetectors, converting the received signals to digital signals, and processing the digital signals.
Abstract:
A beacon location system includes a plurality of first broadcasters configured to broadcast first broadcasts to be received by a registered receiver device, and includes one or more second broadcasters configured to broadcast second broadcasts to be received by the registered receiver device. The beacon location system includes a controller communicatively and operatively coupled to the plurality of first broadcasters, and the one or more second broadcasters, wherein the controller comprises a memory and a processor configured to execute instructions stored on the memory. The instructions include generating one or more masked correspondences between the first broadcasts and locations of the plurality of the first broadcasters, wherein the one or more masked correspondences comprise one or more levels of accuracies. The beacon location system also includes a website accessible to the registered receiver device to obtain the one or more masked correspondences.
Abstract:
Provided are methods and systems of managing vertical handoffs in a wireless communication network. Embodiments include analyzing wireless device usage to determine usage patterns, which may include locations and times at which the wireless device is typically accessing the network. The network may recognize points in the usage patterns at which signal quality parameters are typically reduced. Such reductions in signal quality parameters may lead to inefficient vertical handoffs. The network may decrease adverse effects of inefficient vertical handoffs by reducing ping ponging, selecting links between wireless devices and network nodes, or indicating to a user of the wireless device that delays and/or data loss may occur.
Abstract:
Provided is a lighting system that includes a plurality of luminaires, at least one controller in communication with the luminaires via a communication line in a network, and configured to control the luminaires, and a lighting control system including a smart device which wirelessly communicates with the at least one controller and the plurality of the luminaires, and performs a commissioning operation of the luminaires in the network using visual light communication (VLC).
Abstract:
An electronic driver for operating an illumination device is provided. The electronic driver includes a power converter configured to illuminate the illumination device. The power converter includes a switch capacitor circuit configured to perform at least one of a pulse width modulation dimming and a visible light communication using the illumination device. The switch capacitor circuit includes a plurality of split capacitors operatively coupled in series to a second end of a primary winding of a transformer in the power converter and a control switch operatively coupled to the plurality of split capacitors. The power converter also includes a controller operatively coupled to the control switch and is configured to control the control switch to perform at least one of the pulse width modulation dimming and the visible light communication.
Abstract:
A system and method for electrical charging is disclosed. The electrical charging system comprises a first charging coil and an energy storage device coupled to the first charging coil. The energy charging system further comprises an energy charging station comprising a second charging coil disposed on a movable positioner, wherein the second charging coil is coupleable to an electrical energy source, at least one drive mechanism configured to translate the movable positioned, and a system controller. The system controller is configured to detect an event indicative of a proximity of the first charging coil to the energy charging station, translate the movable positioner such that the second charging coil is substantially aligned with, and closely spaced apart from, the first charging coil to form an electrical transformer, and initiate a charging cycle configured to transfer electrical energy to the at least one energy storage device via the electrical transformer.
Abstract:
A smart street lighting system and method employs a plurality of street lights having a luminaire, a luminaire associate and a support pole. A communications module is contained within the luminaire associates and a power line is contained within the support poles. The power line is coupled to the communications module, the luminaire associate and the luminaire, and a steerable millimeter wave radar operatively coupled to the communications module. The communications module operates in a radio frequency network in a frequency range of 57-64 GHz. The steerable millimeter wave radar provides a signal reflected from a target that may be received by one of the luminaire associates within the system. A powerline communications system interfaces with the radio frequency network to provide communications between the communications modules in the street lights and the PLC system.
Abstract:
A position tracking system includes one or more beacons and one or more sensor pairs. Each of the one or more sensor pairs is configured to be disposed on equipment that moves within a facility. Each of the one or more sensor pairs includes a motion sensor and a beacon sensor configured to receive signals from the one or more beacons. The position tracking system also include a control system, which include a processor configured to receive a first signal collected by the motion sensor, receive a second signal collected by the beacon sensor, compute a first location and/or orientation based on the first signal, and determine a second location and/or orientation based on the second signal.