Abstract:
An imaging system for a vehicle is disclosed having an image sensor positioned in the vehicle for capturing images through a windscreen of the vehicle and for generating image data corresponding to the captured images, and a processor coupled to the image sensor for receiving and analyzing the image data and detecting vehicle light sources in the captured images. The processor: detects a predetermined number of vehicle light sources; averages color values of each detected vehicle light source; determines differences between the averaged color values and target color values; and stores the differences as color compensation values. A vehicle equipment control system is further disclosed having the imaging system above, wherein the processor compensates color values of subsequently detected vehicle light sources and generates a control signal that is used to control the vehicle equipment in response to the detection of color compensated vehicle light sources in the captured images.
Abstract:
An imaging system for a vehicle is provided for distinguishing between tail lights of another vehicle and a flashing red stop light. The system includes an imager configured to image a forward external scene and to generate image data corresponding to the acquired images; and a processor configured to receive and analyze the image data to identify red light sources and to further analyze each red light source to determine if the red light source is detected for a predetermined time period. If the red light source is not detected within a predetermined time period after it is detected, the processor determines that the red light source is a flashing red stop light. Otherwise, if the red light source is detected for a predetermined time period, the processor determines that the red light source may be a tail light of another vehicle.
Abstract:
Systems for aiding a vehicle driver are disclosed. A system may comprise an imager having a field of view forward relative a vehicle and operable to capture a first image. The system may further comprise a controller communicatively connected to the imager. The controller may be operable to detect a road sign in the first image, to interpret the road sign, and to provide an graphic representation of the road sign and/or provide an auditory response based, at least in part on the road sign. The graphic representation may be displayed by a rear-view assembly. The auditory response may be emitted by a speaker. In some embodiments, a location may be associated with one or more road sign interpretation and both the location and interpretation may be transmitted to a remote server.
Abstract:
An imaging system for a vehicle is disclosed having an image sensor positioned in the vehicle for capturing images through a windscreen of the vehicle and for generating image data corresponding to the captured images, and a processor coupled to the image sensor for receiving and analyzing the image data and detecting vehicle light sources in the captured images. The processor: detects a predetermined number of vehicle light sources; averages color values of each detected vehicle light source; determines differences between the averaged color values and target color values; and stores the differences as color compensation values. A vehicle equipment control system is further disclosed having the imaging system above, wherein the processor compensates color values of subsequently detected vehicle light sources and generates a control signal that is used to control the vehicle equipment in response to the detection of color compensated vehicle light sources in the captured images.
Abstract:
An imaging system and method is provided that generates image data. A processor is configured to process the image data and to generate a signal in response to analysis of the image data and a selected mode of operation. The processor selects either a village mode or a non-village mode as a mode of operation depending on whether at least one characteristic in the image data meets village detect conditions. The processor monitors an ambient light level over a period of time and modifies the village detect conditions when the ambient light level reaches a threshold that indicates that the driver's eyes have adapted to a bright ambient light level.
Abstract:
A system is provided for controlling equipment of a controlled vehicle, including: an imaging system including an image sensor configured to acquire images of a scene external of the controlled vehicle and to generate image data corresponding to the acquired images; and a controller in communication with the imaging system. The controller is configured to receive and analyze the image data, to generate a control signal that is used to control the equipment, and to automatically aim the image sensor. The controller may analyze the image data to determine a stability state for the aim of the image sensor. The control signal may include an aim stability indication.
Abstract:
An exterior light control system for controlling exterior lights of a controlled vehicle is provided, which includes an imager configured to image a scene external and forward of the controlled vehicle and to generate image data corresponding to the acquired images. A controller is configured to receive and analyze the image data and generate a control signal for controlling the exterior lights of the controlled vehicle. The controller is further configured to receive temperature information relating to an operational temperature of the imager, wherein when the controller determines that the operational temperature of the imager is below a temperature threshold, the control signal includes an indication that the imager is blocked.
Abstract:
An imaging system and method is provided for detecting fog conditions surrounding a controlled vehicle. An imager having an image sensor is configured to image a scene external and forward of the controlled vehicle and to generate image data corresponding to the acquired images. A processor is configured to receive the image data and to receive additional information including at least one of an outside temperature, a windshield wiper speed, and a vehicle speed. The processor selects logic and/or parameters for detecting the presence of fog in response to the received additional information. The processor then analyzes the image data using the selected logic and/or parameters to detect the presence of fog and generates a signal responsive to the detection of fog.
Abstract:
An imaging system and method is provided that generates image data. A processor is configured to process the image data and to generate a signal in response to analysis of the image data and a selected mode of operation. The processor selects either a village mode or a non-village mode as a mode of operation depending on whether at least one characteristic in the image data meets village detect conditions. The processor monitors an ambient light level over a period of time and modifies the village detect conditions when the ambient light level reaches a threshold that indicates that the driver's eyes have adapted to a bright ambient light level.
Abstract:
An exterior light control system for controlling exterior lights of a controlled vehicle is provided, which includes an imager configured to image a scene external and forward of the controlled vehicle and to generate image data corresponding to the acquired images. A controller is configured to receive and analyze the image data and generate a control signal for controlling the exterior lights of the controlled vehicle. The controller is further configured to receive temperature information relating to an operational temperature of the imager, wherein when the controller determines that the operational temperature of the imager is below a temperature threshold, the control signal includes an indication that the imager is blocked.