Abstract:
Methods for fabricating integrated circuits are provided. In one example, a method for fabricating an integrated circuit includes forming an isolation trench between two fin structures on an integrated circuit substrate, forming a flowable film in the isolation trench using a flowable chemical vapor deposition process, and annealing the flowable film to form a silicon oxide dielectric layer in the isolation trench. The annealing is performed at a temperature of less than about 200° C. with a process gas including N2 and H2O2.
Abstract translation:提供了制造集成电路的方法。 在一个示例中,制造集成电路的方法包括在集成电路基板上的两个鳍结构之间形成隔离沟槽,使用可流动的化学气相沉积工艺在隔离沟槽中形成可流动的膜,并对可流动薄膜进行退火以形成 隔离沟槽中的氧化硅介电层。 使用包括N 2和H 2 O 2的工艺气体在小于约200℃的温度下进行退火。
Abstract:
Structures and fabrication methods for a field-effect transistor. First and second spacers are formed adjacent to opposite sidewalls of a gate structure. A section of the gate structure is partially removed with a first etching process to form a cut that extends partially through the gate structure. After partially removing the section of the gate structure with the first etching process, upper sections of the first and second sidewall spacers arranged above the gate structure inside the cut are at least partially removed. After at least partially removing the upper sections of the first and second sidewall spacers, the section of the gate structure is completely removed from the cut with a second etching process. A dielectric material is deposited inside the cut to form a dielectric pillar.
Abstract:
One illustrative method disclosed herein includes, among other things, forming a sacrificial gate structure above a semiconductor substrate, the sacrificial gate structure comprising a sacrificial gate insulation layer and a sacrificial gate electrode material, performing a first gate-cut etching process to thereby form an opening in the sacrificial gate electrode material and forming an internal sidewall spacer in the opening. In this example, the method also includes, after forming the internal sidewall spacer, performing a second gate-cut etching process through the opening, the second gate-cut etching process being adapted to remove the sacrificial gate electrode material, performing an oxidizing anneal process and forming an insulating material in at least the opening.
Abstract:
One illustrative IC product disclosed herein includes first and second final gate structures and an insulating gate separation structure positioned between the first and second final gate structures. In one embodiment, the insulating gate separation structure has a stepped bottom surface with a substantially horizontally oriented bottom central surface that is surrounded by a substantially horizontally oriented recessed surface, wherein the substantially horizontally oriented bottom central surface is positioned a first level above the substrate and the substantially horizontally oriented recessed surface is positioned at a second level above the substrate, wherein the second level is greater than the first level.
Abstract:
Methods for fabricating integrated circuits are provided. In one example, a method for fabricating an integrated circuit includes forming an isolation trench between two fin structures on an integrated circuit substrate, forming a flowable film in the isolation trench using a flowable chemical vapor deposition process, and annealing the flowable film to form a silicon oxide dielectric layer in the isolation trench. The annealing is performed at a temperature of less than about 200° C. with a process gas including N2 and H2O2.
Abstract:
A method includes forming a gate cut opening by removing a sacrificial material from a portion of a dummy gate in a first dielectric over a substrate. The gate cut opening includes a lower portion in which the sacrificial material was located and an upper portion extending laterally over the first dielectric. Filling the gate cut opening with a second dielectric creates a gate cut isolation. Recessing the second dielectric creates a cap opening in the second dielectric; and filling the cap opening with a third dielectric creates a dielectric cap. The third dielectric is different than the second dielectric, e.g., oxide versus nitride, allowing forming of an interconnect in at least a portion of the third dielectric without the second, harder dielectric acting as an etch stop.
Abstract:
Structures and fabrication methods for a field-effect transistor. First and second spacers are formed adjacent to opposite sidewalls of a gate structure. A section of the gate structure is partially removed with a first etching process to form a cut that extends partially through the gate structure. After partially removing the section of the gate structure with the first etching process, upper sections of the first and second sidewall spacers arranged above the gate structure inside the cut are at least partially removed. After at least partially removing the upper sections of the first and second sidewall spacers, the section of the gate structure is completely removed from the cut with a second etching process. A dielectric material is deposited inside the cut to form a dielectric pillar.
Abstract:
One illustrative method disclosed herein includes, among other things, forming a sacrificial gate structure above a semiconductor substrate, the sacrificial gate structure comprising a sacrificial gate insulation layer and a sacrificial gate electrode material, performing a first gate-cut etching process to thereby form an opening in the sacrificial gate electrode material and forming an internal sidewall spacer in the opening. In this example, the method also includes, after forming the internal sidewall spacer, performing a second gate-cut etching process through the opening, the second gate-cut etching process being adapted to remove the sacrificial gate electrode material, performing an oxidizing anneal process and forming an insulating material in at least the opening.