Abstract:
A sensor for on-chip monitoring the effects of operating conditions on a circuit, Integrated Circuit (IC) chips including the sensors, and a method of monitoring operating condition effects on-chip circuits, e.g., for the occurrence of electromigration. The sensor includes a multi-fingered driver associated with a monitored circuit, sensitive to known circuit parameter sensitivities. Sense and control logic circuit selectively driving the multi-fingered driver, and selectively monitoring for an expected multi-fingered driver response.
Abstract:
A sensor for on-chip monitoring the effects of operating conditions on a circuit, Integrated Circuit (IC) chips including the sensors, and a method of monitoring operating condition effects on-chip circuits, e.g., for the occurrence of electromigration. The sensor includes a multi-fingered driver associated with a monitored circuit, sensitive to known circuit parameter sensitivities. Sense and control logic circuit selectively driving the multi-fingered driver, and selectively monitoring for an expected multi-fingered driver response.
Abstract:
An efficient method of calculating maximum current limits for library gates in which a current limit includes the impact of self-heating effects associated with the maximum current. A maximum current solution is obtained in a self-consistent fashion, providing a way of determining the self-consistent solution in a rapid fashion without extensive numerical calculations or simulations. The present method provides a practical approach for characterizing a large library of gates for use in CMOS designs.
Abstract:
An efficient method of calculating maximum current limits for library gates in which a current limit includes the impact of self-heating effects associated with the maximum current. A maximum current solution is obtained in a self-consistent fashion, providing a way of determining the self-consistent solution in a rapid fashion without extensive numerical calculations or simulations. The present method provides a practical approach for characterizing a large library of gates for use in CMOS designs.