Abstract:
Methodology and system for using vacuum pods to store/transport semiconductor wafers to efficiently reduce contamination of the wafers while reducing cost, cycle time, and process steps and tools without the need for a complete reconfiguration of processes/tools in the fabrication facility are disclosed. Embodiments include configuring a wafer pod with an isolated vacuum environment for storing and transporting semiconductor wafers; configuring a load port module with an isolated vacuum environment to interface with the wafer pod; transporting the wafer pod, including semiconductor wafers, to interlock with the load port module; creating a merged vacuum environment including the isolated vacuum environments of the wafer pod and the load port module; increasing a pressure level in the merged vacuum environment for creating a merged ambient atmospheric environment; and transferring the semiconductor wafers through a transfer chamber, with an isolated environment, from the load port module to a semiconductor wafer processing device.
Abstract:
Disclosed herein are methods and systems for semiconductor fabrication. In one embodiment, a method for fabricating semiconductors utilizing a semiconductor fabrication system includes performing a semiconductor fabrication process on a first lot of unprocessed semiconductor substrates with a semiconductor fabrication equipment unit to form a first lot of processed substrates and communicating processing data regarding the first lot of processed substrates from the semiconductor fabrication equipment unit to a just-in-time (JIT) module of the semiconductor fabrication system. The method further includes determining a processing priority of the first lot of processed substrates and a processing priority of a second lot of unprocessed substrates at the JIT module and scheduling removal of the first lot of processed substrates from the semiconductor fabrication equipment unit and delivery of the second lot of unprocessed substrates to the semiconductor fabrication equipment unit by the JIT module based on the processing data and the priority of one or both of the first lot of processed substrates and the second lot of unprocessed substrates.
Abstract:
Disclosed herein are methods and systems for semiconductor fabrication. In one embodiment, a method for fabricating semiconductors utilizing a semiconductor fabrication system includes performing a semiconductor fabrication process on a first lot of unprocessed semiconductor substrates with a semiconductor fabrication equipment unit to form a first lot of processed substrates and communicating processing data regarding the first lot of processed substrates from the semiconductor fabrication equipment unit to a just-in-time (JIT) module of the semiconductor fabrication system. The method further includes determining a processing priority of the first lot of processed substrates and a processing priority of a second lot of unprocessed substrates at the JIT module and scheduling removal of the first lot of processed substrates from the semiconductor fabrication equipment unit and delivery of the second lot of unprocessed substrates to the semiconductor fabrication equipment unit by the JIT module based on the processing data and the priority of one or both of the first lot of processed substrates and the second lot of unprocessed substrates.
Abstract:
Automated mechanical handling systems (AMHS) for integrated circuit fabrication, system computers programmed for use in the AMHSs, and methods of handling a wafer carrier having an inlet port and an outlet port are provided. An exemplary method of handling the wafer carrier includes providing a plurality of carrier storage positions that are adapted to receive the wafer carrier. The carrier storage positions include a presence sensor and a gas nozzle. The wafer carrier is loaded into one of the carrier storage positions. The presence of the wafer carrier in the carrier storage position is sensed with the presence sensor. A malfunction in gas flow through the inlet port is identified in the carrier storage position that contains the wafer carrier. The wafer carrier is relocated to another carrier storage position in response to identifying the malfunction.
Abstract:
Automated mechanical handling systems (AMHS) for integrated circuit fabrication, system computers programmed for use in the AMHSs, and methods of handling a wafer carrier having an inlet port and an outlet port are provided. An exemplary method of handling the wafer carrier includes providing a plurality of carrier storage positions that are adapted to receive the wafer carrier. The carrier storage positions include a presence sensor and a gas nozzle. The wafer carrier is loaded into one of the carrier storage positions. The presence of the wafer carrier in the carrier storage position is sensed with the presence sensor. A malfunction in gas flow through the inlet port is identified in the carrier storage position that contains the wafer carrier. The wafer carrier is relocated to another carrier storage position in response to identifying the malfunction.