Abstract:
Systems and methods for capturing data of an object are provided. In an example system, a suspension component for suspending an object so that the object is stationary in space is provided. A plurality of image capture devices are configured to capture a plurality of images of the object simultaneously while the object is suspended. The plurality of image capture devices are each positioned at a different location so as to capture a plurality of different views of the object. The system is also configured to generate a three-dimensional (3D) view of the object based on the plurality of images and the plurality of different views.
Abstract:
A method includes receiving a first request for a first robot to perform a first task and processing the first request through first and second computing resources to identify instructions for the first robot to perform the first task. The method also includes providing the one or more instructions to the first robot and identifying information associated with the second computing resource, wherein such information includes environmental information related to a location where the first task is to be performed. The method further includes associating the identified information with the first computing resource, receiving a second request for a second robot to perform a second task, processing the second request through the first computing resource, accessing the information associated with the first computing resource, and, based upon the accessed information, providing instructions to the second robot to perform the second task.
Abstract:
Methods and devices are disclosed for monitoring environmental conditions in one or more environments. In one embodiment, the method includes maintaining a plurality of environmental-condition thresholds, each of which corresponds to an environmental condition and is predetermined based on data corresponding to the environmental condition that is received from a plurality of robots. The method further includes receiving from a first robot first data corresponding to a first environmental condition in a first environment. The method may still further include making a first comparison of the first data and a first environmental-condition threshold corresponding to the first environmental condition and, based on the first comparison, triggering a notification. Triggering the notification may comprise transmitting to the robot instructions to transmit the notification to at least one of a call center and a remote device.
Abstract:
Disclosed are methods and systems for determining and displaying a simulated deformation of a 3D object data model. In one aspect, a method is disclosed that includes causing a force to be applied to an object to cause a deformation of the object and causing a plurality of reference scans of the object to be captured. The method further includes, based on the plurality of reference scans, generating a 3D object data model representing the object and, further based on the plurality of reference scans, identifying a constraint point of the 3D object data model, where the constraint point represents a point of minimum deformation of the object. The method still further includes selecting a predefined deformation model, where the predefined deformation model defines a simulated deformation, and where the simulated deformation simulates at least a portion of the deformation of the object proximate to the point of minimum deformation.
Abstract:
Methods and systems for comparing a 3D model of a target object to a shape-search database are provided. An example method includes using a mobile device to acquire a plurality of images of a target object, determining a 3D model based on the images, transmitting a search query that includes the 3D model, and receiving a search query result. In another example method, a server could receive a search query that includes a 3D model of an object, compare the 3D model to a shape-search database, generate a search query result based on the comparison, and transmit the search query result. The search query result could include one or more of: information regarding the target object, information regarding one or more objects similar to the target object, and a suggestion for acquiring additional images of the target object.
Abstract:
Example implementations may relate to methods and systems for detecting an event in a physical region within a physical space. Accordingly, a computing system may receive from a subscriber device an indication of a virtual region within a virtual representation of the physical space such that the virtual region corresponds to the physical region. The system may also receive from the subscriber a trigger condition associated with the virtual region, where the trigger condition corresponds to a particular physical change in the physical region. The system may also receive sensor data from sensors in the physical space and a portion of the sensor data may be associated with the physical region. Based on the sensor data, the system may detect an event in the physical region that satisfies the trigger condition and may responsively provide to the subscriber a notification that indicates that the trigger condition has been satisfied.
Abstract:
Methods and systems for controlling light arrays to determine properties of an object are described. An example method includes causing illumination of a surface of an object from multiple illumination positions using a programmable array of lights, and receiving images from an image-capture device while the surface of the object is illuminated. For example, the programmable array of lights may be modulated to cause illumination of a portion of the surface of the object from first and second illumination positions, and a first and second image of the surface of the object captured during illumination from the first and second illumination positions respectively may be received. Subsequently, a processor may determine material information for the object based on an amount of specular reflectivity for the surface of the object and reference to a database of known amounts of specular reflectivity for a plurality of materials.
Abstract:
Methods and systems for providing a three-dimensional (3D) image viewer in a webpage are provided. According to an example method, a webpage may be provided, and the webpage may include embedded language that identifies a 3D image viewer to be provided within the webpage. Based on the embedded language, a computer having a processor and a memory may request information associated with rendering a 3D object data model in the 3D image viewer. The method may also include providing the 3D image viewer within the webpage, and receiving information associated with rendering the 3D object data model. Additionally, the 3D object data model may be rendered in the 3D image viewer based on the received information. Additional example systems and methods are described herein.
Abstract:
System and methods for rendering three-dimensional (3D) object data models based on a comparison of images. A 3D object data model of an object can be characterized by parameters defining rendering features of the 3D object data model. A comparison can be made of a first rendering of the 3D object data model to one or more reference images related to the object and, based on the comparison, the parameters of the 3D object data model can be modified. Following the modification, the 3D object data model can be rendered to generate a second rendering. Based on the second rendered 3D object data model, statistical information can be obtained and based on the statistical information, the parameters of the 3D object data model can be modified again to further adjust the appearance of the second rendering of the 3D object data model.
Abstract:
Methods and systems are provided for determining and transmitting applicable lighting information, applicable viewing perspective, and a 3D model for an object in response to a search query. An example method includes receiving, at a server, a search query regarding an object. A 3D model for the object is determined. The 3D model includes three-dimensional shape information about the object. The method also includes determining, based on a plurality of stored images of the object, at least one applicable light field and at least one applicable viewing perspective. A search query result is transmitted from the server. The search query result may include the 3D model, the applicable light field(s), and the applicable viewing perspective(s). A server and a non-transitory computer readable medium are also disclosed that could perform a similar method.