Abstract:
An energy storage device includes: a flattened electrode assembly formed by winding electrodes such that a hollow portion is formed, the electrode assembly including a pair of curved portions opposed manner in a major axis direction and a pair of flat portions opposed in a minor axis direction; and a case storing the electrode assembly therein, wherein assuming a thickness of the flat portion in the minor axis direction as A, a thickness of the curved portion in a radial direction as B, and a thickness of the hollow portion in the minor axis direction as W, the electrode assembly satisfies A+(W/2)≤B in a state where the electrode assembly is discharged.
Abstract:
Provided is an electric storage device including: a first electrode plate; a second electrode plate having a polarity opposite to that of the first electrode plate; and a separator interposed between the first electrode plate and the second electrode plate, wherein the first electrode plate includes a current collector and a mixture layer laminated onto the current collector, the mixture layer contains at least one of the binder and the conductive additive, primary particles of an active material, and secondary particles each having a hollow region formed therein by aggregation of a plurality of the primary particles, and the at least one of the binder and the conductive additive is partially distributed in the hollow region.
Abstract:
An energy storage device includes: a first guide portion which is arranged in the inside of a case and allows an electrolyte solution to flow toward one end of an electrode assembly in a winding axis direction from an electrolyte solution pouring hole; and a second guide portion which is arranged in the inside of the case and allows a fluid to flow toward the electrolyte solution pouring hole from the inside of the case, and which prevents the electrolyte solution from flowing toward the other end of the electrode assembly in the winding axis direction from the electrolyte solution pouring hole or suppresses the electrolyte solution from flowing toward the other end of the electrode assembly in the winding axis direction from the electrolyte solution pouring hole.
Abstract:
Provided is an electric storage device including: a first electrode plate, a second electrode plate having a polarity opposite to that of the first electrode plate, and a separator interposed between the first electrode plate and the second electrode plate, wherein the first electrode plate includes a current collector, a conductive layer laminated onto the current collector, and a mixture layer laminated onto the conductive layer, the mixture layer contains a binder and primary particles of an active material as its constituents, and the primary particles as a constituent of the mixture layer are partially retained in the conductive layer.
Abstract:
Provided is an electric storage device including: a first electrode plate, a second electrode plate having a polarity opposite to that of the first electrode plate, and a separator interposed between the first electrode plate and the second electrode plate, wherein the first electrode plate includes a current collector, a conductive layer laminated onto the current collector, and a mixture layer laminated onto the conductive layer, the mixture layer contains a binder and primary particles of an active material as its constituents, and the primary particles as a constituent of the mixture layer are partially retained in the conductive layer.
Abstract:
An energy storage device includes a casing, a power generating element, a current collector, a connection conductor, an external terminal, and a rivet. The energy storage device further includes a welded portion where at least one of a contact portion between a casing inner portion of the rivet and the current collector, a contact portion between a casing outer portion of the rivet and the connection conductor, and a contact portion between the connection conductor and the external terminal is welded at least partially.
Abstract:
An energy storage device includes a casing, a power generating element, a current collector, a connection conductor, an external terminal, and a rivet. The energy storage device further includes a welded portion where at least one of a contact portion between a casing inner portion of the rivet and the current collector, a contact portion between a casing outer portion of the rivet and the connection conductor, and a contact portion between the connection conductor and the external terminal is welded at least partially.
Abstract:
An aspect of the present invention is an energy storage device including an electrode assembly that has a negative electrode and a positive electrode, where the negative electrode contains a negative electrode substrate and a negative active material, and has a negative active material layer disposed in an unpressed shape along at least one surface of the negative electrode substrate, the negative active material includes solid graphite particles as a main component, and the solid graphite particles have an aspect ratio of 1 or more and 5 or less.
Abstract:
An energy storage device includes a metal case which houses an electrode assembly therein, and an insulation sheet mounted on a portion of an outer surface of the case. The case includes a projecting portion which extends in a thickness direction of the insulation sheet along an edge surface of at least a portion of the insulation sheet, and a distal end of the projecting portion projects from the insulation sheet.
Abstract:
An energy storage device includes: a first guide portion which is arranged in the inside of a case and allows an electrolyte solution to flow toward one end of an electrode assembly in a winding axis direction from an electrolyte solution pouring hole; and a second guide portion which is arranged in the inside of the case and allows a fluid to flow toward the electrolyte solution pouring hole from the inside of the case, and which prevents the electrolyte solution from flowing toward the other end of the electrode assembly in the winding axis direction from the electrolyte solution pouring hole or suppresses the electrolyte solution from flowing toward the other end of the electrode assembly in the winding axis direction from the electrolyte solution pouring hole.