Abstract:
Provided is an energy storage device which includes: an electrode assembly including a positive electrode and a negative electrode respectively including a non-coated region having a metal foil; current collectors each having a support portion which is made to overlap with the non-coated region; and opposedly facing supports each configured to clamp the non-coated region cooperatively with the support portion, wherein at least one of the non-coated region, the support portion and the opposedly facing support includes a conductive layer having non-oxidizing property or hardly-oxidizable property, the conductive layer covering at least one surface out of a surface of the non-coated region facing the support portion, a surface of the non-coated region facing the opposedly facing support, a surface of the support portion facing the non-coated region, and a surface of the opposedly facing support facing the non-coated region.
Abstract:
An energy storage apparatus includes: an energy storage device including a flat electrode assembly in which electrodes are layered and a prismatic case in which the electrode assembly is housed; and a spacer arranged adjacently to the energy storage device in a first direction, wherein the spacer is formed such that a thickness size in the first direction of a center portion of the spacer in a second direction, which is a direction orthogonal to the first direction and is a direction parallel to a surface of the spacer that faces the energy storage device, is set larger than a thickness size in the first direction of other portions of the spacer arranged adjacently to the center portion of the spacer in the second direction, and a width of the center portion of the spacer in a third direction orthogonal to the first and second directions at a contact portion of the spacer with the energy storage device is set smaller than a width of the case in the third direction.
Abstract:
There is provided an energy storage device including an electrode assembly having a pair of electrodes overlapped with each other. At least one of the electrodes includes a current collecting substrate, an active material layer arranged on the current collecting substrate, an intermediate layer arranged between the current collecting substrate and the active material layer, and an insulating layer arranged on the current collecting substrate. The active material layer contains an active material and a first binder. The intermediate layer contains a carbonaceous material and a second binder. The insulating layer contains an insulating material and a third binder. The second binder is a nonaqueous binder. The third binder is an aqueous binder.
Abstract:
An electric storage device includes: a rolled electrode assembly 10 formed by winding a positive electrode, a negative electrode, and a separator so as to have curved portions and linear portions; current collectors 7; and an electrolyte solution 3. A positive electrode substrate has at one end 10A an unformed portion 11E formed without a positive electrode mixture layer, and a negative electrode substrate has at the other end 10B an unformed portion 13E formed without a negative electrode mixture layer. The current collectors 7 are connected respectively to at least part of the linear portions in the unformed portion of the positive electrode at the one end 10A and that of the negative electrode at the other end 10B. The one end 10A in the positive electrode has a length greater than the winding length, and/or the other end 10B in the negative electrode has such a length.
Abstract:
One aspect of the present invention is an energy storage device satisfying the following formula 1, in which a flat electrode assembly obtained by winding a positive electrode and a negative electrode with a separator interposed therebetween and having two curved surface portions facing each other, and a case that houses the electrode assembly, and at least one of the positive electrode and the negative electrode includes an active material layer containing active material particles and a fibrous conductive agent. In the formula 1, X is a distance from a distal end of one of the curved surface portions to the inner surface of the case facing the distal end of the curved surface portion as viewed in the winding axis direction of the electrode assembly. R is a length of a periphery of the one curved surface portion as viewed in the winding axis direction of the electrode assembly. D is an average particle size D50 of the active material particles. A is a surface roughness Ra of the active material layer.
Abstract:
An energy storage device includes: a flattened electrode assembly formed by winding electrodes such that a hollow portion is formed, the electrode assembly including a pair of curved portions opposed manner in a major axis direction and a pair of flat portions opposed in a minor axis direction; and a case storing the electrode assembly therein, wherein assuming a thickness of the flat portion in the minor axis direction as A, a thickness of the curved portion in a radial direction as B, and a thickness of the hollow portion in the minor axis direction as W, the electrode assembly satisfies A+(W/2)≦B in a state where the electrode assembly is discharged.
Abstract:
An energy storage device comprising: an electrode assembly that includes a sheet-like first electrode and a sheet-like second electrode, the first electrode and the second electrode being alternately layered, wherein each of the first electrode and the second electrode includes a sheet-like current collecting substrate, the current collecting substrate of the first electrode is bent toward one side in a layered direction in at least a part of an end portion of the first electrode, the electrode assembly includes an extension portion formed in such a manner that the current collecting substrate of the second electrode extends outward more than the end portion of the first electrode, the extension portion includes a bundle portion formed by bundling the current collecting substrate at a leading end side in an extending direction of the extension portion, and a central position in the layered direction of the bundle portion is shifted from a center in the layered direction of the extension portion toward the one side in the layered direction.
Abstract:
Provided is a negative electrode plate in an electrode assembly of an energy storage device. The negative electrode plate includes: a negative base material layer; and negative active material layers formed on the negative base material layer in a state where the negative active material layers are exposed partially or wholly, wherein a peripheral edge portion of the negative electrode plate includes: a layer-non-formed portion that is disposed on a first side of the negative electrode plate, which is connected to a negative electrode current collector of the energy storage device and on which the negative active material layers are not formed; and a layer-non-exposed portion that is disposed on a second side of the negative electrode plate, which differs from the first side and on which the negative active material layers are not exposed.
Abstract:
Provided is an energy storage device which includes: an electrode assembly where electrodes are layered to each other; and current collector joined to the layered electrodes in a state where the current collector overlaps with the electrodes. The electrode and the current collector are welded to each other or are joined to each other by ultrasonic bonding at a first joint portion. At least one of the electrode and the current collector includes a wall surface which projects from a periphery of the first joint portion or a region adjacent to the periphery along a stacking direction of the electrode and the current collector, and surrounds the first joint portion. The wall surface is disposed on both sides of the first joint portion in the stacking direction.
Abstract:
An energy storage device includes an electrode having an electrode substrate; an active material layer which is disposed to cover a surface of the electrode substrate and which contains active material particles; and an intermediate layer which is disposed between the electrode substrate and the active material layer and which contains a binder, wherein the active material particles of the active material layer enter the intermediate layer, and are in contact with the electrode substrate and the intermediate layer.