Abstract:
A set of instructions implements an application programming interface (API) for providing navigation data from a portable device to a head unit of a vehicle. When invoked by a companion application executing on the portable device, the API is configured to obtain navigation data for navigating a user between a source and a destination, where the portable device receives the navigation data from a navigation server via a long-range communication link. The API is further configured to provide the navigation data to the companion application for transmission to the head unit via a short-range communication link.
Abstract:
Systems and methods are described herein for enabling users to select from available secure service providers (each having a Trusted Service Manager (“TSM”)) for provisioning applications and services on a secure element installed on a device of the user. The device includes a service provider selector (“SPS”) module that provides a user interface for selecting the secure service provider. In one embodiment, the SPS communicates with a key escrow service that maintains cryptographic keys for the secure element and distributes the keys to the user selected secure service provider. The key escrow service also revokes the keys from deselected secure service providers. In another embodiment, the SPS communicates with a central TSM that provisions applications and service on behalf of the user selected secure service provider. The central TSM serves as a proxy between the secure service providers and the secure element.
Abstract:
A projected architecture system may include a first device, associated with a driver of a vehicle, which drives the display of content on the infotainment screen of the vehicle. A passenger in the motor vehicle may have a second device that the passenger can utilize to transmit an instruction to the first device. The instruction may cause the display of the infotainment system to be altered. The passenger may, for example, utilize the second device to cast a point of interest or navigation direction to the infotainment display via the first device. Thus, the driver does not need to search, browse, and/or view functions and/or content on the infotainment system's display and can concentrate on operating the vehicle.
Abstract:
A computer-implemented method includes determining, at a first mobile device associated with a first user, whether a second mobile device is within range for near field communication (NFC). When in range, the method includes receiving, at the first mobile device, first data and second data from the second mobile device via an NFC transmission, the first data being based on input from a second user associated with the second mobile device, the second data being metadata indicating a software application configured to process the first data. When the first mobile device does not have the software application indicated by the second data, the method includes retrieving, at the first mobile device, the software application via a network. The method also includes providing, at the first mobile device, the first data to the first user via the software application.
Abstract:
To facilitate various functionality related to interactions between a portable device and a vehicle head unit, systems and methods (i) efficiently provide audio navigation instructions to a vehicle head unit; (ii) enable data exchange between a portable device which is not in direct communication with a vehicle head unit and the vehicle head unit; and (iii) provide visual output in response to user gestures in an automotive environment.
Abstract:
Certain embodiments of this disclosure include methods and devices for adjusting the precision of location information. According to one embodiment, a method is provided. The method may include: obtaining a request for location information from an application; determining that the location information needs to be adjusted; obtaining the location information; adjusting the location information, wherein the adjusting includes: (i) adding noise to the location information to obtain noisy location information, (ii) discretizing the noisy location information to obtain discretized location information, and (iii) hysteresizing the discretized location information to obtain adjusted location information. The adjusted location information may then be provided to the requesting application.
Abstract:
A first client device or system performs a method that includes retaining in memory registration information for a respective application indicating the respective application is registered for sharing application state with other client devices or systems. The method further includes storing an application state of a respective application, and detecting a transfer triggering condition. The transfer triggering condition includes presence of a second client device or system within a predefined proximity of the first client device or system, and the predefined proximity is a predefined proximity for near field communication. Furthermore, upon detecting the triggering condition, the first client device or system determines, in accordance with the stored registration information, that the respective application is registered for application state sharing, and transmits the application state of the respective application to the second client device or system.
Abstract:
To automatically identify an attempt at presenting falsified vehicle identifiers to portable devices, (i) a vehicle identifier reported by a vehicle with which the portable device is establishing a short-range communication link, and (ii) an indication of a current location of the portable device, are received from a portable device at a first time. An indication of a recent location at which the vehicle identifier was reported at a second time is obtained. The current location of the portable device is compared to the recent location of the vehicle, in view of the first time and the second time. In response to determining that the current location is not proximate to the recent reported location of the vehicle, an indication that the reported identifier is likely falsified is generated.
Abstract:
To facilitate various functionality related to interactions between a portable device and a vehicle head unit, systems and methods (i) efficiently provide audio navigation instructions to a vehicle head unit; (ii) enable data exchange between a portable device which is not in direct communication with a vehicle head unit and the vehicle head unit; and (iii) provide visual output in response to user gestures in an automotive environment.
Abstract:
A computer-implemented technique includes establishing, at a first computing device including one or more processors, a near field communication (NFC) link with a second computing device. The technique includes identifying, at the first computing device, an application having a foreground designation in an operating system of the first computing device, the identifying being performed upon establishment of the NFC link with the second computing device. The technique includes determining, at the first computing device, an identifier for the application, wherein the identifier uniquely identifies the application at a source external to the first computing device. The technique also includes transmitting, from the first computing device, the identifier for the application via the NFC link to the second computing device.