DYNAMIC BANDWIDTH SHARING ON A FIBER LOOP USING SILICON PHOTONICS

    公开(公告)号:US20210367699A1

    公开(公告)日:2021-11-25

    申请号:US16882411

    申请日:2020-05-22

    Abstract: A fiber loop includes a plurality of processors coupled to each other and a controller coupled to each of the plurality of processors. The controller is configured to: assign to each of the plurality of processors a number of wavelengths for interconnect communications between the plurality of processors; receive, from a first processor of the plurality of processors, a request for one or more additional wavelengths; determine whether an interconnect bandwidth utilization on the fiber loop is less than a threshold; and in response to determining that the interconnect bandwidth utilization on the fiber loop is less than the threshold, reassign, to the first processor, one or more wavelengths that are assigned to a second processor of the plurality of processors.

    Multi-wavelength optical signal splitting

    公开(公告)号:US10989878B2

    公开(公告)日:2021-04-27

    申请号:US15929675

    申请日:2020-05-15

    Abstract: An example system for multi-wavelength optical signal splitting is disclosed. The example disclosed herein comprises a first splitter, a second splitter, and a modulator. The system receives a multi-wavelength optical signal and an electrical signal, wherein the multi-wavelength optical signal comprises a plurality of optical wavelengths and has a power level. The first splitter is to split the plurality of optical wavelengths into a plurality of optical wavelength groups. The second splitter is to split the multi-wavelength optical signal or the plurality of optical wavelength groups into a plurality of lower power signal groups. The modulator is to encode the electrical signal into the plurality of optical wavelength groups, the plurality of lower power signal groups, or a combination thereof.

    OPTICAL NOTCH FILTER SYSTEM WITH INDEPENDENT CONTROL OF COUPLED DEVICES

    公开(公告)号:US20200116940A1

    公开(公告)日:2020-04-16

    申请号:US16715455

    申请日:2019-12-16

    Abstract: In the examples provided herein, a system has a first racetrack resonant waveguide structure, positioned to enable an input light signal to couple from a first waveguide; and a second racetrack resonant waveguide structure, positioned to enable the input light signal to couple between the first racetrack resonant waveguide structure and the second racetrack resonant waveguide structure, and further positioned to enable an output light signal to couple from the second racetrack resonant waveguide structure to a second waveguide. The system also has a primary heating unit, positioned to heat a primary region including a first portion of the first racetrack resonant waveguide structure and a first portion of the second racetrack resonant waveguide structure, to change a central frequency and a passband width for the system.

    MULTI-WAVELENGTH OPTICAL SIGNAL SPLITTING
    6.
    发明申请

    公开(公告)号:US20190094466A1

    公开(公告)日:2019-03-28

    申请号:US15718306

    申请日:2017-09-28

    Abstract: An example system for multi-wavelength optical signal splitting is disclosed. The example disclosed herein comprises a first splitter, a second splitter, and a modulator. The system receives a multi-wavelength optical signal and an electrical signal, wherein the multi-wavelength optical signal comprises a plurality of optical wavelengths and has a power level. The first splitter is to split the plurality of optical wavelengths into a plurality of optical wavelength groups. The second splitter is to split the multi-wavelength optical signal or the plurality of optical wavelength groups into a plurality of lower power signal groups. The modulator is to encode the electrical signal into the plurality of optical wavelength groups, the plurality of lower power signal groups, or a combination thereof.

    Zero added latency packet reroute via silicon photonics

    公开(公告)号:US11503387B2

    公开(公告)日:2022-11-15

    申请号:US16880881

    申请日:2020-05-21

    Abstract: Systems and methods are provided for zero-added latency communication between nodes over an optical fabric. In various embodiments, a photonic interface system is provided that comprises a plurality of optical routing elements and optical signal sources. Each node within a cluster is assigned an intra-cluster wavelength and an inter-cluster wavelength. All the nodes in a cluster are directly connected and each node in a cluster is directly connected to one node in each of the plurality of clusters. When an optical signal from a different cluster is received at a node serving as the cluster interface, the photonics interface system allows all wavelength signals other than the node's assigned wavelength to pass through and couple those signals to an intra-cluster transmission signal. Zero latency is added in rerouting the data through an intermediate node.

    OPTICAL INTERCONNECT TOPOLOGY
    9.
    发明申请

    公开(公告)号:US20200257066A1

    公开(公告)日:2020-08-13

    申请号:US16272785

    申请日:2019-02-11

    Abstract: Examples herein relate to optical interconnect topologies. In particular, implementations herein relate to optical interconnects that include a transmitter. The transmitter includes an optical source configured to emit light, a waveguide coupled to the optical source and configured to receive the emitted light from the optical source, a plurality of ring resonators coupled to the waveguide, each ring modulator corresponding to a different channel of the optical source, and wherein each ring resonator is configured to be tuned to a single wavelength of the emitted light different from the other ring resonators. The transmitter further includes a plurality of optical couplers, each optical coupler coupled to a drop port of a respective ring resonator, and wherein each optical coupler is configured to be coupled to an optical fiber and to couple the single wavelength of the emitted light from each respective ring resonator to the optical fiber.

Patent Agency Ranking