Abstract:
Examples herein disclose capturing a wifi signal from a computing device corresponding to a computing accessory and harvesting energy from the captured wifi signal. The examples power the computing accessory based on the harvested energy.
Abstract:
Examples disclosed herein relate to utilizing Bluetooth beacons for location determination of a mobile device. A Wi-Fi signal scan and a Bluetooth beacon scan are initiated at the mobile device. A location of the mobile device is determined based on at least on at least one Bluetooth beacon detectable by the mobile device, where the at least one Bluetooth beacon is transmitted from a first location, and where the first location is the location of the mobile device. A user of the mobile device is prompted for location information input, in response to determining that no Bluetooth beacons are detectable by the mobile device or when the at least one Bluetooth beacon detected is determined to be transmitted from a second location different from the location of the mobile device.
Abstract:
Examples relate to determining finger movements. In one example, a computing device may: receive input from at least one of: a first proximity sensor coupled to the frame at a first position and facing a first direction; or a second proximity sensor coupled to the frame at a second position and facing a second direction; determine, based on the input, that a finger action occurred, the finger action being one of: a first movement of a first finger, the first movement being detected by the first proximity sensor; a second movement of a second finger, the second movement being detected by the second proximity sensor; generate, based on the finger action, output that includes data defining an event that corresponds to the finger action; and provide the output to another computing device.
Abstract:
A system, method, and non-transitory computer readable medium for virtualizing battery in a personal mobile device or across a group of personal mobile devices controlled by a user are provided. The user specifies a set of power management policies for applications running in the personal mobile device(s). Battery usage per application is monitored and resources for the applications are scheduled based on the monitored battery usage and the power management policies.
Abstract:
A system, method, and non-transitory computer readable medium for virtualizing battery in a personal mobile device or across a group of personal mobile devices controlled by a user are provided. The user specifies a set of power management policies for applications running in the personal mobile device(s). Battery usage per application is monitored and resources for the applications are scheduled based on the monitored battery usage and the power management policies.
Abstract:
Systems and methods of scheduling data in background services on mobile devices are disclosed. An example method includes identifying data consumption patterns on a mobile device. The method also includes determining sensitivity of data arriving at the mobile device based on the data consumption patterns. The method also includes aggregating network access by background services on the mobile device according to a schedule based on the sensitivity of the data arriving at the mobile device.
Abstract:
Examples disclosed herein relate to utilizing Bluetooth beacons for location determination of a mobile device. A Wi-Fi signal scan and a Bluetooth beacon scan are initiated at the mobile device. A location of the mobile device is determined based on at least on at least one Bluetooth beacon detectable by the mobile device, where the at least one Bluetooth beacon is transmitted from a first location, and where the first location is the location of the mobile device. A user of the mobile device is prompted for location information input, in response to determining that no Bluetooth beacons are detectable by the mobile device or when the at least one Bluetooth beacon detected is determined to be transmitted from a second location different from the location of the mobile device.
Abstract:
A method for power management of a mobile device. The method includes evaluating content of a plurality of applications received at a mobile device operated by a user and determining latency information for each of the plurality of applications. The method further includes dynamically determining a priority of the plurality of applications based on the latency information for each application, and dynamically adjusting the mobile device between at least two wireless power modes based on the priority of the plurality of applications.