Abstract:
An antenna array comprises a substrate; a plurality of projecting, tapering structures disposed in an array and attached to a first major surface of said substrate, the plurality of projecting, tapering structures defining a plurality of waveguides therebetween; and a plurality of box-shaped structures disposed in an array and attached to a second major surface of the substrate, the plurality of box-shaped structures defining a plurality of waveguides therebetween, the plurality of waveguides defined by the plurality of projecting, tapering structures aligning with the plurality of waveguides defined by the plurality of box-shaped structures. The substrate includes a plurality of probes for feeding the plurality waveguides.
Abstract:
A dielectric resonator antenna that has active components on a selected surface. Also a feed element in the form of a slot mat be formed on the surface to efficiently generate the proper resonance mode within the bulk of the dielectric resonator antenna. The entire dielectric resonator antenna may be flip-chip mounted onto a suitable microwave substrate.
Abstract:
A travelling waveguide antenna has top and bottom spaced plates, the top plate having radiating apertures extending therethrough. The apertures have inclined surfaces facing one another to provide an outward flare of the apertures.
Abstract:
A method for designing a multiple layer frequency selective surface structure. An overall response for the structure is specified. The desired response may be modeled as a filter response. Parameters for each of the layers making up the structure that provide the overall response are determined based on the polarization modes between the layers being decoupled. To provide for decoupling, the individual layers are rotated with respect to each other. The overall response of the structure is then calculated and compared to the desired response. Adjustments are made in the parameters of each layer until the calculated response is equal or nearly equal to the desired response.
Abstract:
An integrated communication device having a substrate layer of substantially electrically nonconductive material with two substantially parallel surfaces, an antenna element disposed on one of the surfaces, a ground layer of substantially electrically conductive material disposed on the other surface and having an opening formed therethrough opposite from the antenna element, and a transceiver device mounted to the ground layer to transmit and/or receive electromagnetic energy through the opening.
Abstract:
A low profile, wide band gap antenna having a high impedance surface, the high impedance surface including a conductive plane and an array of conductive elements spaced from the conductive plane by a distance which is no greater than 10% of a wavelength of an operating frequency of the antenna structure. The conductive plane has an opening therein which is driven by an antenna driving element adjacent the opening in the conductive plane.
Abstract:
Disclosed is an antenna system including a Luneberg Lens having a spherically shaped outer surface and a spherically shaped focal surface spaced from its outer surface with a plurality of patch antenna elements disposed along the focal surface of the Luneberg Lens; and a power combiner for combining signals received by said plurality of patch antenna elements. The disclosed antenna system may be used a part of a robust GPS system having a plurality of GPS satellites each transmitting a GPS signal; a plurality of airborne GPS platforms, each GPS platform including a GPS transmitter for transmitting its own GPS signal, the GPS signals being transmitted from the plurality of airborne GPS platforms being differentiated from the GPS signals transmitted by visible GPS satellites; and at least one terrestrially located GPS receiver for receiving the GPS signals transmitted by visible ones of the GPS satellites and by visible ones of said airborne GPS platforms.
Abstract:
Disclosed is an antenna system including a Luneberg Lens having a spherically shaped outer surface and a spherically shaped focal surface spaced from its outer surface with a plurality of patch antenna elements disposed along the focal surface of the Luneberg Lens; and a power combiner for combining signals received by said plurality of patch antenna elements. The disclosed antenna system may be used a part of a robust GPS system having a plurality of GPS satellites each transmitting a GPS signal; a plurality of airborne GPS platforms, each GPS platform including a GPS transmitter for transmitting its own GPS signal, the GPS signals being transmitted from the plurality of airborne GPS platforms being differentiated from the GPS signals transmitted by visible GPS satellites; and at least one terrestrially located GPS receiver for receiving the GPS signals transmitted by visible ones of the GPS satellites and by visible ones of said airborne GPS platforms.
Abstract:
A device for varying the capacitance of an electronic circuit is disclosed. The device comprises a flexible membrane located above the electronic circuit, a metal layer connected to the flexible membrane, and bias circuitry located above the membrane. Variation of the capacitance of the electronic circuit is obtained by pulling the membrane upwards by means of the bias circuitry. The disclosed device provides a sizeable capacitance variation and high Q factor, resulting in overall low filter insertion loss. A nearly constant group delay over a wide operating bandwidth is also obtained.
Abstract:
Disclosed is an antenna system including a Luneberg Lens having a spherically shaped outer surface and a spherically shaped focal surface spaced from its outer surface with a plurality of patch antenna elements disposed along the focal surface of the Lungberg Lens; and a power combiner for combining signals received by said plurality of patch antenna elements. The disclosed antenna system may be used a part of a robust GPS system having a plurality of GPS satellites each transmitting a GPS signal; a plurality of airborne GPS platforms, each GPS platform including a GPS transmitter for transmitting its own GPS signal, the GPS signals being transmitted from the plurality of airborne GPS platforms being differentiated from the GPS signals transmitted by visible GPS satellites; and at least one terrestrially located GPS receiver for receiving the GPS signals transmitted by visible ones of the GPS satellites and by visible ones of said airborne GPS platforms.