Abstract:
The method for coating a separator for a fuel cell according to one form of the present disclosure includes the steps of: vaporizing a metal nitride precursor to obtain a precursor gas; introducing a metal nitride coating layer-forming gas containing the precursor gas and a reactive gas to a reaction chamber; applying a voltage to the reaction chamber so that the precursor gas and reactive gas may be converted into a plasma state, thereby forming a metal nitride coating layer on a substrate; introducing a carbon layer-forming gas containing a carbonaceous gas to the reaction chamber; and applying a voltage to the reaction chamber so that the carbonaceous gas may be converted into a plasma state, thereby forming a carbon coating layer on the metal nitride coating layer.
Abstract:
The method for coating a separator for a fuel cell according to one form of the present disclosure includes the steps of: vaporizing a metal nitride precursor to obtain a precursor gas; introducing a metal nitride coating layer-forming gas containing the precursor gas and a reactive gas to a reaction chamber; applying a voltage to the reaction chamber so that the precursor gas and reactive gas may be converted into a plasma state, thereby forming a metal nitride coating layer on a substrate; introducing a carbon layer-forming gas containing a carbonaceous gas to the reaction chamber; and applying a voltage to the reaction chamber so that the carbonaceous gas may be converted into a plasma state, thereby forming a carbon coating layer on the metal nitride coating layer.
Abstract:
A separator for a fuel cell includes a base layer, a first metal carbide coating layer disposed at one or both sides of on the base layer; a metal coating layer disposed above the first metal carbide coating layer; and a second metal carbide coating layer disposed above the metal layer.
Abstract:
A separator for a fuel cell includes: a metal base material; and a carbon coating layer formed on one surface or both surfaces of the metal base material, in which roughness Ra formed at an interface between the metal base material and the carbon coating layer may be in a range of 20 to 78 nm.
Abstract:
A coating method of a separator for a fuel cell includes steps of vaporizing a precursor to prepare a precursor gas; introducing the precursor gas and a reactive gas into a reaction chamber; and forming a coating layer on a base material by applying a voltage to the reaction chamber to change the precursor gas and the reactive gas into a plasma state.