Abstract:
The method for coating a separator for a fuel cell according to one form of the present disclosure includes the steps of: vaporizing a metal nitride precursor to obtain a precursor gas; introducing a metal nitride coating layer-forming gas containing the precursor gas and a reactive gas to a reaction chamber; applying a voltage to the reaction chamber so that the precursor gas and reactive gas may be converted into a plasma state, thereby forming a metal nitride coating layer on a substrate; introducing a carbon layer-forming gas containing a carbonaceous gas to the reaction chamber; and applying a voltage to the reaction chamber so that the carbonaceous gas may be converted into a plasma state, thereby forming a carbon coating layer on the metal nitride coating layer.
Abstract:
A separator for a fuel cell includes a base layer, a first metal carbide coating layer disposed at one or both sides of on the base layer; a metal coating layer disposed above the first metal carbide coating layer; and a second metal carbide coating layer disposed above the metal layer.
Abstract:
Disclosed herein is a manufacturing method of a porous thermal insulation coating layer. In the manufacturing method, a porous thermal insulation coating layer having excellent close adhesion may be uniformly formed within a shorter time and the porous thermal insulation coating layer may be applied to an internal combustion engine, thereby making it possible to secure low thermal conductivity and low volume thermal capacity.
Abstract:
A separator for a fuel cell includes: a metal base material; and a carbon coating layer formed on one surface or both surfaces of the metal base material, in which roughness Ra formed at an interface between the metal base material and the carbon coating layer may be in a range of 20 to 78 nm.
Abstract:
A coating method of a separator for a fuel cell includes steps of vaporizing a precursor to prepare a precursor gas; introducing the precursor gas and a reactive gas into a reaction chamber; and forming a coating layer on a base material by applying a voltage to the reaction chamber to change the precursor gas and the reactive gas into a plasma state.
Abstract:
An exhaust system for a vehicle includes a heat insulation coating layer formed on an inner wall surface of an exhaust gas flow tube through which exhaust gas passes. The heat insulation coating layer includes an inorganic binder including two or more silicon-based compounds and an aerogel dispersed in the inorganic binder, includes 5 to 50 parts by weight of the aerogel for 100 parts by weight of the inorganic binder, and has heat conductivity of at most 1.0 W/mK, measured by ASTM E1461.
Abstract:
A fuel reforming system for a vehicle intake and exhaust line that reforms fuel in a vehicle intake and exhaust line including an exhaust gas recirculation (EGR) apparatus that recirculates a portion of an exhaust gas of an engine and a recirculation line that transfers an exhaust gas that is recirculated by the exhaust gas recirculation apparatus to supply as an intake gas of the engine, may include a fuel reformer that mixes an exhaust gas that passes through the recirculation line with fuel and that reforms fuel that is mixed in the exhaust gas, wherein an insulation material is coated at a wall surface of the fuel reformer.
Abstract:
The method for coating a separator for a fuel cell according to one form of the present disclosure includes the steps of: vaporizing a metal nitride precursor to obtain a precursor gas; introducing a metal nitride coating layer-forming gas containing the precursor gas and a reactive gas to a reaction chamber; applying a voltage to the reaction chamber so that the precursor gas and reactive gas may be converted into a plasma state, thereby forming a metal nitride coating layer on a substrate; introducing a carbon layer-forming gas containing a carbonaceous gas to the reaction chamber; and applying a voltage to the reaction chamber so that the carbonaceous gas may be converted into a plasma state, thereby forming a carbon coating layer on the metal nitride coating layer.
Abstract:
An exhaust valve for an engine which discharges an exhaust gas generated in a combustion chamber of the engine may include an adiabatic coating layer having a polyamideimide resin and an aerogel dispersed in the polyamideimide resin and having thermal conductivity of 0.60 W/m or less formed on a face portion of the exhaust valve coming into contact with a flame.