Abstract:
A semiconductor memory device included in a system-on-chip (SOC) or a microcomputer chip. The semiconductor memory device may include a flash memory cell array unit and a mask read-only memory (ROM) cell array unit which are formed in a single memory block without an isolation layer for separating the two units. Transistors included in the flash memory unit and the mask ROM unit are the same type and may have two threshold voltages. The transistor in each memory cell unit may be a split gate transistor, a metal-oxide-nitride-oxide-silicon, or silicon-oxide-nitride-oxide-silicon transistor. Further, the transistor included in the mask ROM unit in the semiconductor memory device may include enhancement transistors or depletion transistors in which a dopant ion-implanted region is formed at channel portions.
Abstract:
A semiconductor memory device included in a system-on-chip (SOC) or a microcomputer chip. The semiconductor memory device may include a flash memory cell array unit and a mask read-only memory (ROM) cell array unit which are formed in a single memory block without an isolation layer for separating the two units. Transistors included in the flash memory unit and the mask ROM unit are the same type and may have two threshold voltages. The transistor in each memory cell unit may be a split gate transistor, a metal-oxide-nitride-oxide-silicon, or silicon-oxide-nitride-oxide-silicon transistor. Further, the transistor included in the mask ROM unit in the semiconductor memory device may include enhancement transistors or depletion transistors in which a dopant ion-implanted region is formed at channel portions.
Abstract:
Provided are a method and apparatus for encoding and decoding a stereoscopic image. A stereoscopic image restoring method includes parsing a received data stream into image data of a stereoscopic image and information regarding the stereoscopic image; extracting a camera parameter depending on individual characteristics of each of one or more cameras which have captured the stereoscopic image; and decoding and restoring the image data of the stereoscopic image.
Abstract:
A digital broadcasting stream transmitting method and a digital broadcasting stream receiving method and apparatus for providing three-dimensional (3D) video services are provided. The transmitting method including: generating a plurality of elementary streams (ESs) for a plurality of pieces of video information including at least one of information about a base-view video of a 3D video, information about an additional-view video corresponding to the base-view video, and a two-dimensional (2D) video having a different view from views of the 3D video; multiplexing the plurality of ESs with link information for identifying at least one piece of video information linked with the plurality of pieces of video information, to generate at least one transport stream (TS); and transmitting the generated at least one TS via at least one channel.
Abstract:
Provided are a method and apparatus for displaying a two-dimensional (2D)/three-dimensional (3D) image, and apparatus to execute the same, the method including determining whether an input image sequence having a first frame rate is a 2D image sequence or a 3D image sequence, wherein, if the input image sequence is a 2D image sequence, generating a 2D output image sequence having a second frame rate, the 2D output image sequence including the input image sequence and a 2D intermediate image generated from the input image sequence, and wherein, if the input image sequence is a 3D image sequence, generating a 3D output image sequence having a third frame rate, where a left-viewpoint intermediate image, a right-viewpoint intermediate image and the input image sequence are repeatedly included in the 3D output image sequence, the left-viewpoint intermediate image is determined from at least one left-viewpoint image in a left-viewpoint image sequence included in the input image sequence, and the right-viewpoint intermediate image is determined from at least one right-viewpoint image in a right-viewpoint image sequence included in the input image sequence.
Abstract:
A method of determining a two-dimensional (2D) or three-dimensional (3D) display mode is provided. An image sequence is received. Whether a current image included in the image sequence is a 2D or 3D image is determined. Based on a result of the determination, a 2D or 3D display mode for the image sequence is determined.
Abstract:
A gigabit passive optical network (GPON) system for fiber to the home (FTTH) service must provide a down-stream data rate of an optical band to provide IPTV service with hundreds of channels to subscribers, and must be able to provide an upstream data rate of an optical band using a currently available BM-IC chip. A currently available BM-IC chip for a GPON has 1.244 Gbps and 2.488 Gbps modes. Accordingly, an optical network terminal (ONT) for a GPON that is capable of providing a downstream transmission band of 10-Gbps and an upstream transmission band of 1.244 Gbps or 2.488 Gbps, and a method for processing an upstream frame in the terminal, are provided. The GPON ONT can provide 20 Mbps, high-definition IPTV service with 500 channels and can provide both upstream data rates of 1.244 Gbps and 2.488 Gbps according to a user's selection without using an additional device.
Abstract:
Provided is a method of decoding a stereoscopic image data stream. In the method, a plurality of monoscopic image data regions are determined from among image data regions of a stereoscopic image data stream; a composition time stamp (CTS) of each of the monoscopic image data regions is extracted; and, if there are colliding image data regions having the same CTS from among the monoscopic image data regions, monoscopic image data is extracted from a monoscopic image data region of a main stream of the colliding image data regions.
Abstract:
Provided are an apparatus and method for efficiently and dynamically allocating a bandwidth on a Time Division Multiple Access-based Passive Optical Network (TDMA PON). The dynamic bandwidth allocation apparatus for uplink data transmission of a plurality of Optical Network Units (ONUs) including a plurality of class queues corresponding to Transmission Container (T-CONT) types, the plurality of ONUs connected to an Optical Line Terminal (OLT) on a Passive Optical Network (PON), includes: a class queue information storage unit storing information regarding a bandwidth allocation period and an allocatable bandwidth amount for each T-CONT type; an allocation check table unit checking the bandwidth allocation period for the T-CONT type received from the class queue information storage unit, and determining an allocatable bandwidth amount for the T-CONT type; and a bandwidth allocation unit allocating an uplink bandwidth to the T-CONT type with reference to the bandwidth allocation period and the allocatable bandwidth amount for the T-CONT type, and re-allocating to each ONU an uplink bandwidth remaining after allocating a total uplink bandwidths to all T-CONT types.
Abstract:
A non-volatile memory device includes a memory cell array with a plurality of unit memory cells arranged in a matrix pattern, each of the unit memory cells having first and second non-volatile memory transistors sharing a common source, and a selection transistor connected between the common source and one of the first and second non-volatile memory transistors, a first word line coupled to control gates of the first non-volatile memory transistors arranged in a column direction of the memory cell array, a second word line coupled to control gates of the second non-volatile memory transistors arranged in the column direction of the memory cell array, a selection line coupled to gates of the selected transistors arranged in the column direction of the memory cell array, and at least one bit line coupled to drains of the first and second non-volatile memory transistors.