摘要:
The present invention relates to a semiconductor device structure and a method for manufacturing the same; the structure comprises: a semiconductor substrate on which a device structure is formed thereon; an interlayer dielectric layer formed on the device structure, wherein a trench is formed in the interlayer dielectric layer, the trench comprises an incorporated via trench and a conductive wiring trench, and the conductive wiring trench is positioned on the via trench; and a conductive layer filled in the trench, wherein the conductive layer is electrically connected with the device structure; wherein the conductive layer comprises a conductive material and a nanotube/wire layer surrounded by the conductive material. Wherein, the conductive layer comprises a conductive material and a nanotube/wire layer surrounded by the conductive material. The conductive layer of the structure has better thermal conductivity, conductivity and high anti-electromigration capability, thus is able to effectively prevent metal ions from diffusing outwards.
摘要:
The present invention relates to a semiconductor device structure and a method for manufacturing the same; the structure comprises: a semiconductor substrate on which a device structure is formed thereon; an interlayer dielectric layer formed on the device structure, wherein a trench is formed in the interlayer dielectric layer, the trench comprises an incorporated via trench and a conductive wiring trench, and the conductive wiring trench is positioned on the via trench; and a conductive layer filled in the trench, wherein the conductive layer is electrically connected with the device structure; wherein the conductive layer comprises a conductive material and a nanotube/wire layer surrounded by the conductive material. Wherein, the conductive layer comprises a conductive material and a nanotube/wire layer surrounded by the conductive material. The conductive layer of the structure has better thermal conductivity, conductivity and high anti-electromigration capability, thus is able to effectively prevent metal ions from diffusing outwards.
摘要:
The present invention relates to a semiconductor substrate, an integrated circuit having the semiconductor substrate, and methods of manufacturing the same. The semiconductor substrate for use in an integrated circuit comprising transistors having back-gates according to the present invention comprises: a semiconductor base layer; a first insulating material layer on the semiconductor base layer; a first conductive material layer on the first insulating material layer; a second insulating material layer on the first conductive material layer; a second conductive material layer on the second insulating material layer; an insulating buried layer on the second conductive material layer; and a semiconductor layer on the insulating buried layer, wherein at least one first conductive via is provided between the first conductive material layer and the second conductive material layer to penetrate through the second insulating material layer so as to connect the first conductive material layer with the second conductive material layer, the position of each of the first conductive vias being defined by a region in which a corresponding one of a first group of transistors is to be formed.
摘要:
The present application discloses a semiconductor structure and a method for manufacturing the same. Compared with conventional approaches to form contacts, the present disclosure reduces contact resistance and avoids a short circuit between a gate and contact plugs, while simplifying manufacturing process, increasing integration density, and lowering manufacture cost. According to the manufacturing method of the present disclosure, second shallow trench isolations are formed with an upper surface higher than an upper surface of the source/drain regions. Regions defined by sidewall spacers of the gate, sidewall spacers of the second shallow trench isolations, and the upper surface of the source/drain regions are formed as contact holes. The contacts are formed by filling the contact holes with a conductive material. The method omits the steps of etching for providing the contact holes, which lowers manufacture cost. By forming the contacts self-aligned with the gate, the method avoids misalignment and improves performance of the device while reducing a footprint of the device and lowering manufacture cost of the device.
摘要:
The present invention relates to a semiconductor substrate, an integrated circuit having the semiconductor substrate, and methods of manufacturing the same. The semiconductor substrate for use in an integrated circuit comprising transistors having back-gates according to the present invention comprises: a semiconductor base layer; a first insulating material layer on the semiconductor base layer; a first conductive material layer on the first insulating material layer; a second insulating material layer on the first conductive material layer; a second conductive material layer on the second insulating material layer; an insulating buried layer on the second conductive material layer; and a semiconductor layer on the insulating buried layer, wherein at least one first conductive via is provided between the first conductive material layer and the second conductive material layer to penetrate through the second insulating material layer so as to connect the first conductive material layer with the second conductive material layer, the position of each of the first conductive vias being defined by a region in which a corresponding one of a first group of transistors is to be formed.
摘要:
A semiconductor structure and a method for fabricating the same. A semiconductor structure includes a semiconductor substrate; a channel region formed in the semiconductor substrate; a gate including a dielectric layer and a conductive layer and formed above the channel region; source and drain regions formed at opposing sides of the gate; first shallow trench isolations embedded into the semiconductor substrate and having a length direction parallel to the length direction of the gate; and second shallow trench isolations, each of which abuts the outer sidewall of the source or the drain region and abuts the first shallow trench isolations, in which the source and drain regions include first seed crystal layers abutting the second shallow trench isolations, and the top surfaces of the second shallow trench isolations are higher than or as high as the top surfaces of the source and drain regions.
摘要:
The present invention relates to a semiconductor device and a method for manufacturing the same. According to the present invention, when a gate is formed via a replacement gate process, a portion of a work function metal layer and a portion of a first metal layer are removed after the work function metal layer and the first metal layer are formed, and then the removed portions are replaced with a second metal layer. A device having such a gate structure greatly reduces the resistivity of the whole gate, due to a portion of the work function metal layer with a high resistivity being removed and the removed portion being filled with the second metal layer with a low resistivity, thereby AC performances of the device are improved.
摘要:
The present invention provides a semiconductor device and a method for manufacturing the same. The method for manufacturing the semiconductor device comprises: providing a silicon substrate having a gate stack structure formed thereon and having {100} crystal indices; forming an interlayer dielectric layer coving a top surface of the silicon substrate; forming a first trench in the interlayer dielectric layer and/or in the gate stack structure, the first trench having an extension direction being along crystal direction and perpendicular to that of the gate stack structure; and filling the first trench with a first dielectric layer, wherein the first dielectric layer is a tensile stress dielectric layer. The present invention introduces a tensile stress in the transverse direction of a channel region by using a simple process, which improves the response speed and performance of semiconductor devices.
摘要:
A semiconductor structure and a method for fabricating the same. A semiconductor structure includes a semiconductor substrate; a channel region formed in the semiconductor substrate; a gate including a dielectric layer and a conductive layer and formed above the channel region; source and drain regions formed at opposing sides of the gate; first shallow trench isolations embedded into the semiconductor substrate and having a length direction parallel to the length direction of the gate; and second shallow trench isolations, each of which abuts the outer sidewall of the source or the drain region and abuts the first shallow trench isolations, in which the source and drain regions include first seed crystal layers abutting the second shallow trench isolations, and the top surfaces of the second shallow trench isolations are higher than or as high as the top surfaces of the source and drain regions.
摘要:
The present invention provides an isolation structure for a semiconductor substrate and a method for manufacturing the same, as well as a semiconductor device having the structure. The present invention relates to the field of semiconductor manufacture. The isolation structure comprises: a trench embedded in a semiconductor substrate; an oxide layer covering the bottom and sidewalls of the trench, and isolation material in the trench and on the oxide layer, wherein a portion of the oxide layer on an upper portion of the sidewalls of the trench comprises lanthanum-rich oxide. By the trench isolation structure according to the present invention, metal lanthanum in the lanthanum-rich oxide can diffuse into corners of the oxide layer of the gate stack, thus alleviating the impact of the narrow channel effect and making the threshold voltage adjustable.