摘要:
One embodiment of present invention provides a method for manufacturing a semiconductor structure, which comprises: forming a gate stack on a semiconductor substrate and removing parts of the substrates situated on two sides of the gate stack; forming sidewall spacers on sidewalls of the gate stack and on sidewalls of the part of the substrate under the gate stack; forming doped regions in parts of the substrate on two sides of the gate stack, and forming a first dielectric layer to cover the entire semiconductor structure; selectively removing parts of the gate stack and parts of the first dielectric layer to form a channel region opening and source/drain region openings; forming a high K dielectric layer on sidewalls of the channel region opening; and implementing epitaxy process to form a continuous fin structure that spans across the channel region opening and the source/drain region openings.
摘要:
The present disclosure discloses a method for manufacturing a P-type MOSFET, comprising: forming a part of the MOSFET on a semiconductor substrate, the part of the MOSFET comprising source/drain regions in the semiconductor substrate, a replacement gate stack between the source/drain regions above the semiconductor substrate, and a gate spacer surrounding the replacement gate stack; removing the replacement gate stack of the MOSFET to form a gate opening exposing a surface of the semiconductor substrate; forming an interface oxide layer on the exposed surface of the semiconductor; forming a high-K gate dielectric layer on the interface oxide layer in the gate opening; forming a first metal gate layer on the high-K gate dielectric layer; implanting dopant ions into the first metal gate layer; and performing annealing to cause the dopant ions to diffuse and accumulate at an upper interface between the high-K gate dielectric layer and the first metal gate layer and a lower interface between the high-K gate dielectric layer and the interface oxide layer, and also to generate electric dipoles by interfacial reaction at the lower interface between the high-K gate dielectric layer and the interface oxide layer.
摘要:
A method of manufacturing a FinFET semiconductor device is provided, wherein the semiconductor fins are formed in a parallel arrangement which intersects the gates arranged in parallel. The polycrystalline silicon layer is deposited and then converted into a single crystal silicon layer such that the single crystal silicon layer and the semiconductor fins are integrated in essence, i.e., the source/drain region in the semiconductor fins is raised and the top area of the semiconductor fins is extended. Subsequently, the single crystal silicon layer above the top of the semiconductor fins is converted into a metal silicide so as to form a source/drain region contact. The source/drain region contact in the present invention has a larger area than that in a conventional FinFET, which decreases the contact resistance and facilitates the formation of a self-aligned metal plug in the follow-up process.
摘要:
The present application discloses a semiconductor device comprising a source region and a drain region in an ultra-thin semiconductor layer; a channel region between the source region and the drain region in the ultra-thin semiconductor layer; a front gate stack above the channel region, the front gate comprising a front gate and a front gate dielectric between the front gate and the channel region; and a back gate stack below the channel region, the back gate stack comprising a back gate and a back gate dielectric between the back gate and the channel region, wherein the front gate is made of a high-Vt material, and the back gate is made of a low-Vt material. According to another embodiment, the front gate and the back gate are made of the same material, and the back gate is applied with a forward bias voltage during operation. The semiconductor device alleviates threshold voltage fluctuation due to varied thickness of the channel region by means of the back gate.
摘要:
Embodiments of the present invention disclose a method for manufacturing a Fin Field-Effect Transistor. When a fin is formed, a dummy gate across the fin is formed on the fin, a spacer is formed on sidewalls of the dummy gate, and a cover layer is formed on the first dielectric layer and on the fin outside the dummy gate and the spacer; then, an self-aligned and elevated source/drain region is formed at both sides of the dummy gate by the spacer, wherein the upper surfaces of the gate and the source/drain region are in the same plane. The upper surfaces of the gate and the source/drain region are in the same plane, making alignment of the contact plug easier; and the gate and the source/drain region are separated by the spacer, thereby improving alignment accuracy, solving inaccurate alignment of the contact plug, and improving device AC performance.
摘要:
A semiconductor device comprises a semiconductor substrate on an insulating layer; and a second gate that is located on the insulating layer and is embedded at least partially in the semiconductor substrate. A method for forming a semiconductor device comprises: forming a semiconductor substrate on an insulating layer; forming a void within the semiconductor substrate, with the insulating layer being exposed by the void; and forming a second gate, with the void being filled with at least one part of the second gate. It facilitates the reduction of the short channel effects, resistances of the source and drain regions, and parasitic capacitances.
摘要:
The present invention generally relates to a semiconductor structure and method, and more specifically, to a structure and method for reducing floating body effect of silicon on insulator (SOI) metal oxide semiconductor field effect transistors (MOSFETs). An integrated circuit (IC) structure includes a SOI substrate and at least one MOSFET formed on the SOI substrate. Additionally, the IC structure includes an asymmetrical source-drain junction in the at least one MOSFET by damaging a pn junction to reduce floating body effects of the at least one MOSFET.
摘要:
An embedded source/drain MOS transistor and a formation method thereof are provided. The embedded source/drain MOS transistor comprises: a semiconductor substrate; a gate structure on the semiconductor substrate; and a source/drain stack embedded in the semiconductor substrate at both sides of the gate structure with an upper surface of the source/drain stack being exposed, wherein the source/drain stack comprises a dielectric layer and a semiconductor layer above the dielectric layer. The present invention can cut off the path for the leakage current from the source region and the drain region to the semiconductor substrate, thereby reducing the leakage current from the source region and the drain region to the semiconductor substrate.
摘要:
Semiconductor devices and methods for manufacturing the same are disclosed. In one aspect, the method comprises forming a first shielding layer on a substrate, and forming one of source and drain regions with the first shielding layer as a mask. Then, forming a second shielding layer on the substrate, and forming the other of the source and drain regions with the second shielding layer as a mask. Then, removing a portion of the second shielding layer which is next to the other of the source and drain regions. Lastly, forming a first gate dielectric layer, a floating gate layer, and a second gate dielectric layer, and forming a gate conductor as a spacer on a sidewall of a remaining portion of the second shielding layer.
摘要:
The present application discloses a MOSFET and a method for manufacturing the same, wherein the MOSFET comprises: an SOI wafer, which comprises a semiconductor substrate, a buried insulator layer, and a semiconductor layer, the buried insulator layer being disposed on the semiconductor substrate, and the semiconductor layer being disposed on the buried insulator layer; a gate stack, which is disposed on the semiconductor layer; a source region and a drain region, which are disposed in the semiconductor layer and on opposite sides of the gate stack; and a channel region, which are disposed in the semiconductor layer and sandwiched by the source region and the drain region, wherein the MOSFET further comprises a back gate disposed in the semiconductor substrate, and wherein the back gate comprises first, second and third compensation doping regions, the first compensation doping region is disposed under the source region and the drain region; the second compensation doping region extends in a direction away from the channel region and adjoining the first compensation doping region; and the third compensation doping region is disposed under the channel region and adjoining the first compensation doping region. By changing the doping type of the back gate, the MOSFET can have an adjustable threshold voltage, and can have a reduced parasitic capacitance and a reduced contact resistance in connection with the back gate.