Abstract:
A MONOCRYSTALLINE SEMICONDUCTOR BODY HAS A SINGLE, CONTINUOUS INSULATING LAYER EXTENDING FROM THE SURFACE TO A SELECTED DEPTH IN THE BODY AND SURROUNDING A REGION OF THE BODY TO DIELECTRICALLY ISOLATE THE REGION, WHICH HAS ONE SURFACE FORMED BY THE SURFACE OF THE BODY, FROM THE REMAINDER OF THE BODY. THE INSULATING LAYER IS PRODUCED BY BOMBARDING THE BODY WITH IONS, WHICH REACT WITH ATOMS IN THE BODY WHEN HEATED TO A PREDETERMINED TEMPERATURE, THE IONS ARE DIRECTED THROUGH AN OPENING IN A MASK AND A BEVELED SURFACE OF THE MASK SURROUNDING THE OPENING. THE BEVELED SURFACE CONTROLS THE PENETRATION OF THE IONS FROM THE SURFACE OF THE BODY INTO THE BODY TO THE SUB-SURFACE LAYER OF THE IONS DIRECTED THROUGH THE OPENING IN THE MASK. WHEN THE BODY IS HEATED TO THE SELECTED TEMPERATURE, THE EMBEDDED IONS REACT WITH THE ATOMS IN THE BODY TO PRODUCE THE INSULATING LAYER AND DIELECTRICALLY ISOLATE THE REGION, WHICH IS SURROUNDED BY THE SINGLE, CONTINUOUS LAYER, FROM THE REMAINDER OF THE BODY.
Abstract:
A monocrystalline semiconductor body provided with a subsurface insulating layer. The layer is produced by bombarding the body with ions such as nitrogen, oxygen and carbon, for a time sufficient to produce a dense layer of embedded ions and at an energy level sufficient to result in ion penetration to the desired subsurface depth. The body is subsequently heated to a temperature sufficient to react the embedded ions with ions of the semiconductor body to produce an insulating layer.