Abstract:
This invention relates to a process for the production of hydrogen from a hydrocarbon feedstock and steam comprising: A stage for the production of a synthesis gas in a unit for the steam-reforming of the hydrocarbon feedstock, A stage for shift conversion with steam of the synthesis gas that is obtained in the preceding stage producing a hydrogen stream that contains methane and carbon dioxide, A stage for recovering carbon dioxide and methane, present in the stream that is obtained in the shift conversion stage, in the form of hydrates that produce a stream of pure hydrogen, A stage for regeneration of methane, A stage for recycling methane to steam reforming.
Abstract:
The invention relates to a method and a plant for removing the acid compounds contained in two gaseous effluents of different origins, comprising using a single amine-based absorbent solution circulating between a first absorber and a regenerator, and a second absorber and the same regenerator. The present invention advantageously applies for example to CO2 capture within a single plant intended for capture of the gaseous effluents produced upon hydrogen production through steam reforming of a gaseous hydrocarbon feed, such as combustion fumes and syngas.
Abstract:
The present invention describes a process for pre-treating a steam reforming feed containing sulphur-containing compounds, using two desulphurization reactors: a temporary desulphurization reactor (1010) containing an active adsorbent solid; a permanent desulphurization reactor (1003) placed upstream of the steam reforming unit, which contains an adsorbent solid in the passivated state, necessitating a depassivation phase in order to be rendered active; the temporary desulphurization reactor (1010) being disconnected as soon as the adsorbent solid of the permanent desulphurization reactor (1003) has been activated, and the volume of the temporary desulphurization reactor being in the range 1/20 to 1/200 times the volume of the permanent desulphurization reactor.