Abstract:
A method for a motion test and a control host of a movable machinery are provided. The method includes: loading a first motion test program; generating, according to the first motion test program, a template file recording first coordinate information indicated by the first motion test program for the movable machinery to perform a physical motion; loading a second motion test program; reading the template file according to program information of the second motion test program and comparing second coordinate information indicated by the second motion test program for the movable machinery to perform the physical motion with the first coordinate information; and generating, according to a comparison result, a warning message reflecting that a control for the movable machinery by the second motion test program may be abnormal.
Abstract:
A method and a system, for offsetting measurement of machine tool, includes following steps. A tool seat is chosen, a first coordinate is set based on a first datum mark of the tool seat. There is a total tool seat assembling length in between the first datum mark and the tool seat. A tool is chosen, assembled in the tool seat, and includes a total tool length. A second coordinate is set based on a second datum mark of a measuring unit. The tool seat is moved to make a machining end of the tool contact with the second coordinate to obtain a relative total length in between the first and the second coordinate. The total tool length subtracts from the relative total length equals an assembled offset length. The total tool seat assembling length subtracts from the relative total length equals and obtains a tool assembling length.
Abstract:
A motion control system and a motion control method are provided. The motion control method includes: sending a plurality of machining commands to a second controller by a first controller at a cloud; storing the plurality of machining commands in a buffer by the second controller; and operating the machine tool according to the plurality of machining commands stored in the buffer. As such, when poor communication occurs between the first controller and the second controller, the second controller causes the buffer to send a deceleration command to the machine tool so as to cause the machine tool to operate at a reduced speed, thereby avoiding unexpected motion such as sudden shutdown of the machine tool and damage to machined products.
Abstract:
A motion control system and a motion control method are provided. The motion control method includes: sending a plurality of machining commands to a second controller by a first controller at a cloud; storing the plurality of machining commands in a buffer by the second controller; and operating the machine tool according to the plurality of machining commands stored in the buffer. As such, when poor communication occurs between the first controller and the second controller, the second controller causes the buffer to send a deceleration command to the machine tool so as to cause the machine tool to operate at a reduced speed, thereby avoiding unexpected motion such as sudden shutdown of the machine tool and damage to machined products.
Abstract:
A management method for a cutting tool of a machine tool is provided. A user host imports a graphical data of a workpiece and a cutting tool database into CAM, and a user may select cutting tools to establish a complete machining process. T codes are replaced with electronic tags. Before executing a machine code comprising the electronic tags, the machine tool re-scans the cutting tools assembled at a tool turret and updates cutting tool arrangement information to ensure that the tool turret is equipped with the cutting tools used in the machining process. When the machine tool stores the electronic tags, a ready message is displayed for reminding an operator. When the electronic tags are not stored, the current storage location of a cutting tool lacked in the machining process or a warning message is displayed at the operation interface for reminding the operator.
Abstract:
An automatic angle-measured apparatus includes a driving unit coupled with a clamping plate and a driving seat, an encoding unit located at an end of the driving unit facing the driving seat and signally connected to the driving unit, at least one attitude sensor located at the driving seat, and a control unit signally connected to the encoding unit and the attitude sensor. The attitude sensor senses the un-rotated and the rotated driving seat to generate a first and a second signals, respectively. The control unit bases on the first and the second signals to calculate an offset. The control unit controls the driving unit to rotate a predetermined angle. The encoding unit bases on the predetermined angle to generate location information. The control unit bases on the first signal, the second signal and the location information to calculate angle information and compensation for performing a correction procedure.
Abstract:
An apparatus for electrical discharge machining modulation control includes an EDM module, an open-circuit voltage modulation module, a reference-voltage modulation and judgment module, a database, and a control unit. The control unit selects a reference voltage, and an open-circuit voltage corresponding to characteristics of a workpiece from the database, and generates and transmits a second control signal to the open-circuit voltage modulation module for modulating the open-circuit voltage, and a third control signal to the reference-voltage modulation and judgment module for modulating the reference voltage utilized to determine if the ignition happened. The open-circuit voltage modulation module receives a first control signal periodically transmitted from the control unit for providing the open-circuit voltage to the EDM module. The reference-voltage modulation and judgment module performs an arc voltage measurement procedure, then the control unit determines the open-circuit voltage and the reference voltage.
Abstract:
A management method for a cutting tool of a machine tool is provided. A user host imports a graphical data of a workpiece and a cutting tool database into CAM, and a user may select cutting tools to establish a complete machining process. T codes are replaced with electronic tags. Before executing a machine code comprising the electronic tags, the machine tool re-scans the cutting tools assembled at a tool turret and updates cutting tool arrangement information to ensure that the tool turret is equipped with the cutting tools used in the machining process. When the machine tool stores the electronic tags, a ready message is displayed for reminding an operator. When the electronic tags are not stored, the current storage location of a cutting tool lacked in the machining process or a warning message is displayed at the operation interface for reminding the operator.
Abstract:
A method for a motion test and a control host of a movable machinery are provided. The method includes: loading a first motion test program; generating, according to the first motion test program, a template file recording first coordinate information indicated by the first motion test program for the movable machinery to perform a physical motion; loading a second motion test program; reading the template file according to program information of the second motion test program and comparing second coordinate information indicated by the second motion test program for the movable machinery to perform the physical motion with the first coordinate information; and generating, according to a comparison result, a warning message reflecting that a control for the movable machinery by the second motion test program may be abnormal.
Abstract:
A machine tool collision avoidance method includes: loading multiple processing codes; simulating multiple path traces corresponding to the processing codes; estimating multiple execution periods for running the path traces; selecting the shortest execution period from the execution periods; determines whether the distance between the trace point points on any two of the path traces is less than a safety distance within the shortest execution period; if the distance between a first trace point on a first path trace and a second trace point on a second path trace is less than the safety distance, estimating a first time point at which a first turret runs to the first trace point and a second time point at which the second turret runs to the second trace point; generating a collision warning if the difference between the first time point and the second time point is lower than a tolerance value.