Abstract:
An optical fiber module is provided and includes an optical fiber structure, a light-absorbing area and a photoelectric sensor in a housing. The optical fiber structure collectively arranges a plurality of first optical fibers to form at least one optical fiber bundle with a tapered end, and a second optical fiber is connected to the tapered end of the optical fiber bundle to converge the optical fiber bundle to the second optical fiber. The light-absorbing area corresponds to an end of the second optical fiber, such that the light-absorbing area absorbs scattering signals escaped and scattered when signals are transmitted from the plurality of first optical fibers to the second optical fiber. The photoelectric sensor is arranged corresponding to the plurality of first optical fibers to receive target signals escaped and refracted when the signals are transmitted from the second optical fiber to the plurality of first optical fibers.
Abstract:
An apparatus for generating a short-pulse laser using a temporally modulated sideband gain is provided. The apparatus includes a laser diode and an external reflector. By use of a time difference resulted by a nanosecond laser pulse signal at the external reflector, a sideband gain is obtained for generating a short-pulse picosecond laser output.
Abstract:
An apparatus for generating a pulse train with an adjustable time interval is provided. The apparatus, being an annular optical cavity structure, includes a seed source receiving end, a pump source receiving end, an optical coupler, an optical combiner, a gain fiber, an optical path time regulator and a beam splitter. Thus, the apparatus is capable of generating a pulse train with an adjustable time interval to increase material processing quality and speed.
Abstract:
A laser inspection system is provided. A laser source emits a laser with a first spectrum and the laser is transmitted by a first optical fiber. A gain optical fiber doped with special ions is connected to the first optical fiber, and a light detector is provided around the gain optical fiber. When the laser with the first spectrum passes through the gain optical fiber, the gain optical fiber absorbs part of the energy level of the laser with the first spectrum, so that the laser with the first spectrum is converted to generate light with a second spectrum based on the frequency conversion phenomenon. The light detector detects the intensity of the light with the second spectrum, so that the power of the laser source can be obtained.
Abstract:
An optical fiber module is provided and includes an optical fiber structure, a light-absorbing area and a photoelectric sensor in a housing. The optical fiber structure collectively arranges a plurality of first optical fibers to form at least one optical fiber bundle with a tapered end, and a second optical fiber is connected to the tapered end of the optical fiber bundle to converge the optical fiber bundle to the second optical fiber. The light-absorbing area corresponds to an end of the second optical fiber, such that the light-absorbing area absorbs scattering signals escaped and scattered when signals are transmitted from the plurality of first optical fibers to the second optical fiber. The photoelectric sensor is arranged corresponding to the plurality of first optical fibers to receive target signals escaped and refracted when the signals are transmitted from the second optical fiber to the plurality of first optical fibers.
Abstract:
A laser inspection system is provided. A laser source emits a laser with a first spectrum and the laser is transmitted by a first optical fiber. A gain optical fiber doped with special ions is connected to the first optical fiber, and a light detector is provided around the gain optical fiber. When the laser with the first spectrum passes through the gain optical fiber, the gain optical fiber absorbs part of the energy level of the laser with the first spectrum, so that the laser with the first spectrum is converted to generate light with a second spectrum based on the frequency conversion phenomenon. The light detector detects the intensity of the light with the second spectrum, so that the power of the laser source can be obtained.
Abstract:
An apparatus for generating a short-pulse laser using a temporally modulated sideband gain is provided. The apparatus includes a laser diode and an external reflector. By use of a time difference resulted by a nanosecond laser pulse signal at the external reflector, a sideband gain is obtained for generating a short-pulse picosecond laser output.