Abstract:
An optical fiber module is provided and includes an optical fiber structure, a light-absorbing area and a photoelectric sensor in a housing. The optical fiber structure collectively arranges a plurality of first optical fibers to form at least one optical fiber bundle with a tapered end, and a second optical fiber is connected to the tapered end of the optical fiber bundle to converge the optical fiber bundle to the second optical fiber. The light-absorbing area corresponds to an end of the second optical fiber, such that the light-absorbing area absorbs scattering signals escaped and scattered when signals are transmitted from the plurality of first optical fibers to the second optical fiber. The photoelectric sensor is arranged corresponding to the plurality of first optical fibers to receive target signals escaped and refracted when the signals are transmitted from the second optical fiber to the plurality of first optical fibers.
Abstract:
A method and a system of detecting a tilt angle of an object surface and a method and a system of compensating the same are provided. The detecting method includes the following steps. Light beams are projected by a light source device to the object surface. An image of the object surface is captured so as to obtain light spots on the object surface. A focus program is executed by adjusting a vertical distance between the light source device and the object surface, so as to gather the light spots in a focal point on the object surface. The vertical distance is adjusted, and a correction angle between the light beams and the object surface is calculated according to the light spots.
Abstract:
An optical fiber module is provided and includes an optical fiber structure, a light-absorbing area and a photoelectric sensor in a housing. The optical fiber structure collectively arranges a plurality of first optical fibers to form at least one optical fiber bundle with a tapered end, and a second optical fiber is connected to the tapered end of the optical fiber bundle to converge the optical fiber bundle to the second optical fiber. The light-absorbing area corresponds to an end of the second optical fiber, such that the light-absorbing area absorbs scattering signals escaped and scattered when signals are transmitted from the plurality of first optical fibers to the second optical fiber. The photoelectric sensor is arranged corresponding to the plurality of first optical fibers to receive target signals escaped and refracted when the signals are transmitted from the second optical fiber to the plurality of first optical fibers.
Abstract:
A laser processing system includes a laser source, an optical splitting unit, a frequency conversion unit and at least one optical mixer. The optical splitting unit is provided to divide light emitted by the laser source into a first light and a second light, and the first light and the second light have the same wavelength range. The frequency conversion unit is provided to convert the second light into a working light. The working light includes a frequency converted light, and the frequency converted light and the second light have different wavelength ranges. The optical mixer is provided to mix the first light with the frequency converted light.
Abstract:
A laser machining system and a method thereof are disclosed. The disclosed laser machining system comprises a laser generator, an array photo detector, a processer, and a position controller. The laser generator is configured to emit laser via a first light path onto a work piece. The array photo detector is configured to receive the thermal radiation from the work piece via a second light path, different from the first light path, to generate a thermal radiation image. The processor, electrically coupled to the laser generator and the array photo detector, is configured to calculate a temperature centroid of the thermal radiation image and generate a distance control signal according to the temperature centroid. The position controller, electrically coupled to the processor, is controlled by the distance control signal to make a present distance between the laser machining system equal to a working distance.
Abstract:
A method and a system of detecting a tilt angle of an object surface and a method and a system of compensating the same are provided. The detecting method includes the following steps. Light beams are projected by a light source device to the object surface. An image of the object surface is captured so as to obtain light spots on the object surface. A focus program is executed by adjusting a vertical distance between the light source device and the object surface, so as to gather the light spots in a focal point on the object surface. The vertical distance is adjusted, and a correction angle between the light beams and the object surface is calculated according to the light spots.