Abstract:
A touch control device comprises a flexible touch panel, a sensor and a controller. The flexible touch panel receives a touch input. The sensor detects a bending of the flexible touch panel. The controller drives the flexible touch panel with a load drive capability setting and adjusts the load drive capability setting according to the bending of the flexible touch panel.
Abstract:
A pixel array structure including a bottom carrier plate, a wire layer, a planarization layer, a pixel unit layer and a conductor structure is provided. The wire layer is disposed on the bottom carrier plate. The planarization layer covers the wire layer and has a flat surface at a side away from the wire layer. The pixel unit layer is disposed on the flat surface of the planarization layer. The pixel unit layer includes a pixel unit including a driving circuit structure and a pixel electrode electrically connected to the driving circuit structure. The conductor structure passes through the planarization layer and is connected between the driving circuit structure and the wire layer. A display panel having the pixel array structure and a method of fabricating the pixel array structure are also provided.
Abstract:
A pixel structure including a substrate, a power wire, a planarization layer, a drive circuit and a conductive structure is provided. The substrate has a layout area and a light-transmitting area located outside the layout area. The power wire is disposed on the layout area of the substrate. The power wire includes a shielding layer. The planarization layer is disposed on the substrate and covers the power wire. The drive circuit is disposed on the planarization layer and corresponds to the layout area. The drive circuit includes a first active device. The shielding layer overlaps with the first active device. The conductive structure is disposed in the planarization layer and distributed corresponding to the layout area. The power wire is electrically connected with the drive circuit through the conductive structure. A display panel is also provided.
Abstract:
A semiconductor device is provided to include a flexible substrate, a barrier layer, a heat insulating layer, a device layer, a dielectric material later and a stress absorbing layer. The barrier layer is disposed on the flexible substrate. The heat insulating layer is disposed on the barrier layer, wherein the heat insulating layer has a thermal conductivity of less than 20 W/mK. The device layer is disposed on the heat insulating layer. The dielectric material layer is disposed on the device layer, and the dielectric material layer and the heat insulating layer include at least one trench. The stress absorbing layer is disposed on the dielectric material layer, and the stress absorbing layer fills into the at least one trench.
Abstract:
A pixel structure including a substrate, a power wire, a planarization layer, a drive circuit and a conductive structure is provided. The substrate has a layout area and a light-transmitting area located outside the layout area. The power wire is disposed on the layout area of the substrate. The power wire includes a shielding layer. The planarization layer is disposed on the substrate and covers the power wire. The drive circuit is disposed on the planarization layer and corresponds to the layout area. The drive circuit includes a first active device. The shielding layer overlaps with the first active device. The conductive structure is disposed in the planarization layer and distributed corresponding to the layout area. The power wire is electrically connected with the drive circuit through the conductive structure. A display panel is also provided.
Abstract:
A transistor device including a semiconductor material layer, a gate layer, and an insulation layer between the gate layer and the semiconductor material layer is provided. The semiconductor material layer includes a first conductive portion, a second conductive portion, a channel portion between the first conductive portion and the second conductive portion, and a first protruding portion formed integrally. The channel portion has a first boundary adjacent to the first conductive portion, a second boundary adjacent to the second conductive portion, a third boundary, and a fourth boundary. The third boundary and the fourth boundary connect the terminals of the first boundary and the second boundary. The first protruding portion is protruded outwardly from the third boundary of the channel portion. The first gate boundary and the second gate boundary are overlapped with the first boundary and the second boundary of the channel portion.
Abstract:
In one embodiment, a flexible device is provided. The flexible device may include a flexible substrate, a buffer layer, a light reflective layer, and a device layer. The buffer layer is located on the flexible substrate. The light reflective layer is located on the flexible substrate, wherein the light reflective layer has a reflection wavelength of 200 nm˜1100 nm, a reflection ratio of greater than 80%, and a stress direction of the light reflective layer is the same as a stress direction of the flexible substrate. The device layer is located on the light reflective layer and the buffer layer.
Abstract:
In one embodiment, a flexible device is provided. The flexible device may include a flexible substrate, a buffer layer, a light reflective layer, and a device layer. The buffer layer is located on the flexible substrate. The light reflective layer is located on the flexible substrate, wherein the light reflective layer has a reflection wavelength of 200 nm˜1100 nm, a reflection ratio of greater than 80%, and a stress direction of the light reflective layer is the same as a stress direction of the flexible substrate. The device layer is located on the light reflective layer and the buffer layer.
Abstract:
A semiconductor device is provided to include a flexible substrate, a barrier layer, a heat insulating layer, a device layer, a dielectric material later and a stress absorbing layer. The barrier layer is disposed on the flexible substrate. The heat insulating layer is disposed on the barrier layer, wherein the heat insulating layer has a thermal conductivity of less than 20 W/mK. The device layer is disposed on the heat insulating layer. The dielectric material layer is disposed on the device layer, and the dielectric material layer and the heat insulating layer include at least one trench. The stress absorbing layer is disposed on the dielectric material layer, and the stress absorbing layer fills into the at least one trench.
Abstract:
A touch control device comprises a flexible touch panel, a sensor and a controller. The flexible touch panel receives a touch input The sensor detects a bending of the flexible touch panel. The controller drives the flexible touch panel with a load drive capability setting and adjusts the load drive capability setting according to the bending of the flexible touch panel.