SCREENING FOR FLUCTUATING ENERGY RELAXATION TIMES

    公开(公告)号:US20230289400A1

    公开(公告)日:2023-09-14

    申请号:US17694063

    申请日:2022-03-14

    CPC classification number: G06F17/18 G06N10/40

    Abstract: One or more systems, devices, computer program products and/or computer-implemented methods of use provided herein relate to determining estimated true relaxation times of qubits absent measurement of entire T1 decay times of the qubits. A system can comprise a memory that stores computer executable components; and a processor that executes the computer executable components stored in the memory, wherein the computer executable components are executable to cause, by the processor, one or more energy relaxation measurements, using a pulse generation, at the qubit frequency for a qubit and at a plurality of shifted frequencies for the qubit, and to determine, by the processor, a true average relaxation time of the qubit based on the plurality of energy relaxation measurements.

    Structure for an antenna chip for qubit annealing

    公开(公告)号:US11482657B2

    公开(公告)日:2022-10-25

    申请号:US16676598

    申请日:2019-11-07

    Abstract: Systems and techniques providing suitable chip structures for facilitating antenna-based thermal annealing of qubits are provided. In one example, a radio frequency emitter can comprise a voltage-controlled oscillator and an antenna. The voltage-controlled oscillator can receive power-on signals from a microcontroller, thereby causing the voltage-controlled oscillator to generate an electromagnetic wave. The antenna can then direct the electromagnetic wave onto a set of one or more capacitor pads of a Josephson junction on a superconducting qubit chip, thereby annealing the Josephson junction. In another example, a voltage regulator and a digital-to-analog converter or digital-to-digital converter can be coupled in series between the microcontroller and the voltage-controlled oscillator, thereby allowing the voltage-controlled oscillator to be voltage and/or frequency tunable and eliminating the need for external power routing as compared to photonic laser annealing. In yet another example, a bipolar-junction and complementary metal-oxide semiconductor stack construction can be employed.

    METHODS FOR ANNEALING QUBITS WITH AN ANTENNA CHIP

    公开(公告)号:US20210234087A1

    公开(公告)日:2021-07-29

    申请号:US17230607

    申请日:2021-04-14

    Abstract: Systems, computer-implemented methods, and techniques facilitating antenna-based thermal annealing of qubits are provided. In one example, a first antenna can be positioned above a superconducting qubit chip having a first Josephson junction and a second Josephson junction. The first antenna can direct a first electromagnetic wave toward the first Josephson junction. A first length of a first defined vertical gap, between the first antenna and the superconducting qubit chip, can be sized to cause the first electromagnetic wave to circumscribe a first set of one or more capacitor pads of the first Josephson junction, thereby annealing the first Josephson junction, without annealing the second Josephson junction. In another example, the first length of the first defined vertical gap can be a function of a model of the first electromagnetic wave as a cone, wherein the cone originates from the first antenna and extends toward the superconducting qubit chip.

    Transmon qubit flip-chip structures for quantum computing devices

    公开(公告)号:US10956828B2

    公开(公告)日:2021-03-23

    申请号:US16445717

    申请日:2019-06-19

    Abstract: A quantum computing device is formed using a first chip and a second chip, the first chip having a first substrate, a first set of pads, and a set of Josephson junctions disposed on the first substrate. The second chip has a second substrate, a second set of pads disposed on the second substrate opposite the first set of pads, and a second layer formed on a subset of the second set of pads. The second layer is configured to bond the first chip and the second chip. The subset of the second set of pads corresponds to a subset of the set of Josephson junctions selected to avoid frequency collision between qubits in a set of qubits. A qubit is formed using a Josephson junction from the subset of Josephson junctions and another Josephson junction not in the subset being rendered unusable for forming qubits.

    Fabricating transmon qubit flip-chip structures for quantum computing devices

    公开(公告)号:US10944039B2

    公开(公告)日:2021-03-09

    申请号:US16445764

    申请日:2019-06-19

    Abstract: A quantum computing device is formed using a first chip and a second chip, the first chip having a first substrate, a first set of pads, and a set of Josephson junctions disposed on the first substrate. The second chip has a second substrate, a second set of pads disposed on the second substrate opposite the first set of pads, and a second layer formed on a subset of the second set of pads. The second layer is configured to bond the first chip and the second chip. The subset of the second set of pads corresponds to a subset of the set of Josephson junctions selected to avoid frequency collision between qubits in a set of qubits. A qubit is formed using a Josephson junction from the subset of Josephson junctions and another Josephson junction not in the subset being rendered unusable for forming qubits.

    Antenna-based quibit annealing method

    公开(公告)号:US10707402B2

    公开(公告)日:2020-07-07

    申请号:US16591993

    申请日:2019-10-03

    Abstract: Systems and techniques facilitating antenna-based thermal annealing of qubits are provided. In one example, a radio frequency emitter, transmitter, and/or antenna can be positioned above a superconducting qubit chip having a Josephson junction coupled to a set of one or more capacitor pads. The radio frequency emitter, transmitter, and/or antenna can emit an electromagnetic signal onto the set of one or more capacitor pads. The capacitor pads can function as receiving antennas and therefore receive the electromagnetic signal. Upon receipt of the electromagnetic signal, an alternating current and/or voltage can be induced in the capacitor pads, which current and/or voltage thereby heat the pads and the Josephson junction. The heating of the Josephson junction can change its physical properties, thereby annealing the Josephson junction. In another example, the emitter can direct the electromagnetic signal to avoid unwanted annealing of neighboring qubits on the superconducting qubit chip.

Patent Agency Ranking