Abstract:
The invention presents systems and methods for initializing the phase-change layer of an optical medium. The method includes alternately quenching the phase-change material into amorphous states and crystallization states in a single pass of an optical head past the optical medium.
Abstract:
The invention is directed toward techniques for creating molded substrates for use in various different data storage media. The molded substrates have improved thickness profiles that can improve media quality, and in some cases facilitate higher data storage densities. In many cases, the improved thickness profile is a thickness profile that has improved flatness. Mechanical flatness or optical flatness can be achieved. In particular, optical flatness is desirable for substrates used in holographic data storage media having a sandwiched construction.
Abstract:
The invention is directed to self-referenced holographic recording techniques that make use of an element of a holographic medium to create a reference beam from a zero frequency Fourier component of a data encoded object beam. In other words, the self-referencing element may be formed on the holographic medium, rather then being a separate element of the holographic recording system. The element may comprise a diffusive element on the medium, designed to create a reference beam having controlled angles, phase and/or amplitude.
Abstract:
In one embodiment, a holographic data storage medium includes a substrate, a holographic recording material, and an optically detectable tracking pattern on the medium. The substrate may have first and second substrate portions. The holographic recording material may be a photopolymer, and the medium may have a sandwiched construction, where the holographic recording material is sandwiched between the first and second substrate portions. The optically detectable tracking pattern may be replicated on at least one of the substrate portions. Alternatively, the optically detectable tracking pattern may be recorded as a holographic grating in the holographic recording material. The tracking pattern may facilitate the ability to pinpoint the location of the holographic bit maps on the holographic medium to within a fraction of a micron.
Abstract:
Holographic data storage media having a sandwiched construction are described in which a holographic recording material is sandwiched between two substrates. The substrates may be formed with fluid containment features in proximity to outer edges of the respective substrates. Also, the substrates may be formed with centerpieces that are recessed relative to outer surfaces of the respective substrates. Such substrate features can improve and simplify the media fabrication process and may improve media quality.
Abstract:
The diffraction-based monitoring techniques described herein can be used, for example, as quality assurance measure in manufacture of magnetic recording media with servo tracking. In one embodiment, the invention presents a system comprising a light source such as a laser that directs light upon a surface of a magnetic recording medium. The magnetic recording medium has two or more physical marks, and the light striking the magnetic recording medium produces a diffraction pattern. A light detector such as a photodiode detects some or all of the diffraction pattern. The physical marks may be servo tracks on the magnetic recording medium, and the detected diffraction pattern is a function of the characteristics of the servo tracks.
Abstract:
The invention presents the concept of self-referenced holographic data recording. In exemplary embodiments, the invention comprises methods of recording holograms on holographic data storage media; media produced by such methods; and self-referencing holographic data storage systems. A method of recording data in a holographic recording medium may comprise illuminating a medium with a data encoded first optical beam, optically directing a zero frequency Fourier component of the first optical beam to create a second optical beam, and illuminating the medium with the second optical. In some embodiments, for example, a self-referencing holographic data storage system has a single optical path directed towards a medium.
Abstract:
In one embodiment, holographic data storage medium includes a first thermoplastic substrate portion having a thickness less than approximately 2 millimeters and a second thermoplastic substrate portion having a thickness less than approximately 2 millimeters. A holographic recording material may be sandwiched between the first and second thermoplastic substrate portions. By making thermoplastic substrate portions sufficiently thin, edge wedge problems can be avoided.