Abstract:
Disclosed is a microelectronics package. The microelectronics package may include a reference plane, a signal routing layer, a dielectric layer, and a conductive layer. The signal routing layer may include a plurality of signal routing traces. The dielectric layer may be located adjacent to the signal routing layer. The conductive layer may be applied to the dielectric layer such that the dielectric layer is located in between the signal routing layer and the conductive layer. The conductive layer may be in electrical communication with the reference plane.
Abstract:
A parallel via design is disclosed to improve the impedance match for embedded common mode choke filter designs. Particularly suited to such designs on four-layer printed circuit boards, the parallel via design effectively suppresses the reflection of the differential pair. By connecting the vias in parallel, the inductance of the entire via structure is reduced while its capacitance is simultaneously increased. By properly choosing the number of parallel vias and the spacing between them, the impedance of the parallel vias can be well controlled within the frequency range of interest. Consequently, the impedance match can be improved and the return loss of a four-layer printed circuit board common mode choke filter design is reduced.
Abstract:
Disclosed is a microelectronics package. The microelectronics package may include a reference plane, a signal routing layer, a dielectric layer, and a conductive layer. The signal routing layer may include a plurality of signal routing traces. The dielectric layer may be located adjacent to the signal routing layer. The conductive layer may be applied to the dielectric layer such that the dielectric layer is located in between the signal routing layer and the conductive layer. The conductive layer may be in electrical communication with the reference plane.
Abstract:
Disclosed is a microelectronics package. The microelectronics package may include a reference plane, a signal routing layer, a dielectric layer, and a conductive layer. The signal routing layer may include a plurality of signal routing traces. The dielectric layer may be located adjacent to the signal routing layer. The conductive layer may be applied to the dielectric layer such that the dielectric layer is located in between the signal routing layer and the conductive layer. The conductive layer may be in electrical communication with the reference plane.
Abstract:
Some embodiments include apparatuses and electrical models associated with the apparatus. One of the apparatuses includes an integrated circuit having a die; a package substrate; first conductive connections coupled between the die and a first side of the package substrate; second conductive connections located on a second side of the package substrate opposite from the first side. The second conductive connections are coupled to the first conductive connections through conductive paths in the package substrate. The first conductive connections and the conductive connections are associated with an S-parameter of an electrical model of the integrated circuit package. The electrical model further includes at least one of a current value associated with a power rail of the integrated circuit package, an impedance target associated with a location at the integrated circuit package, and a mapping associated with the first and second conductive connections.
Abstract:
A parallel via design is disclosed to improve the impedance match for embedded common mode choke filter designs. Particularly suited to such designs on four-layer printed circuit boards, the parallel via design effectively suppresses the reflection of the differential pair. By connecting the vias in parallel, the inductance of the entire via structure is reduced while its capacitance is simultaneously increased. By properly choosing the number of parallel vias and the spacing between them, the impedance of the parallel vias can be well controlled within the frequency range of interest. Consequently, the impedance match can be improved and the return loss of a four-layer printed circuit board common mode choke filter design is reduced.