Abstract:
A method for demodulating a modulated signal, by: receiving a signal modulated in n-PSK or n-APSK comprising a succession of symbols organized in frames, each frame comprising a header followed by blocks of data symbols separated by blocks of pilot symbols, determining the phase of the headers and pilot blocks to predict the evolution of the signal phase, correcting the phase of the data symbols according to the evolution of the signal phase, and equalizing the data symbols corrected in phase using equalization coefficients evaluated thanks to estimated or known symbols of the signal, and pre-equalizing the header, pilot and data symbols, which is performed before determining the phase of the headers and pilot blocks, and using the estimated equalization coefficients to equalize the data symbols.
Abstract:
A method for searching a digital transmission having unknown carrier and symbol frequencies in a modulated reception signal, includes performing successive trials of several carrier and symbol frequencies, using decreasing values of the symbol frequency, demodulating the reception signal with the tried carrier frequency, filtering the demodulated signal in a band having a width corresponding to the currently tried symbol frequency, and producing samples of the filtered signal. For each currently tried symbol frequency, forming a complex indicator having a real component and an imaginary component established from the successive samples of the filtered signal such that they have cyclostationary properties and that one of the components tends to cancel when the other component tends towards a relative maximum, building the spectrum of the variation of the complex indicator, searching for a singular spike in the spectrum, and determining the real symbol frequency from the frequency of the spike.
Abstract:
A method and a device for estimating a first value of a signal formed of a series of values corresponding either to the first value or to a second value equal to the opposite of the first value, where the signal can take values other than the first and second values due to noise.
Abstract:
A method for receiving a signal having a succession of symbols, transmitted by a digital modulation, each symbol transmitted having a phase and an amplitude belonging to a set of values in finite number, the method includes evaluating a phase error (PHE) on a received symbol (S), resulting from a signal transmission noise, correcting the phase of the received symbol according to the phase error evaluated, demodulating the symbol corrected in phase, and modeling the transmission noise by a Gaussian component not correlated with the signal received and defined by a power and an interference component defined by an amplitude and which phase is substantially uniformly distributed, the phase error of the received symbol evaluated on the basis of the power of Gaussian component and the amplitude of the interference component.
Abstract:
We describe the use a material which is based on microporous, filler-containing polyolefin and essentially consists of a homogeneous mixture of ultra-high molecular weight polyolefin, filler and plasticizer, for absorbing sweat and other bodily exhalations. This material is preferably treated with antibacterial and/or fungicidal agents and is suitable for avoiding the formation of odor, for example in shoes and articles of clothing. The use in the form of an inner sole which has ribs running at right angles to the longitudinal axis of the inner sole to form hollow spaces is preferred.
Abstract:
A method for detecting a locked condition of a demodulator of at least one signal that may have discrete levels defining a constellation of nominal points in a plane. The method includes the steps of defining reference areas about the nominal points, a reference area being separated from another by a band or an angular sector crossing the origin of the constellation plane, and indicating a locked condition if the ratio of points occurring in the reference areas is above the probability for points to occur in the reference areas when the demodulator is wrongly adjusted.
Abstract:
A saturated cross-linkable binder composition adapted for preparing coatings having a non-glossy surface is disclosed which comprises:(a) at least one cross-linkable resin selected from the group consisting of saturated polyester resins and epoxide resins;(b) a cross-linking agent wherein the functional groups are selected from the group consisting of acid groups and acid anhydride groups and, in case the cross-linkable resin is a saturated polyester resin, also masked isocyanate groups; and,(c) having associated therewith a salt of an at least bivalent metal ion and an organic acid anion selected from the group consisting of carboxylic anions and acetylacetonate.These binder compositions are particularly useful as binding agents in powderous paint compositions which yield a paint coating having a non-glossy and textured surface.
Abstract:
A process receives a composite signal transmitted via a nonlinear data transmission channel, with the composite signal having a first signal UL and a second signal LL. The process includes the following: demodulating and decoding the first signal UL by using a first demodulation and decoding chain in order to regenerate first information of the first signal UL; recoding and shaping to produce a continuous time waveform; applying a nonlinearity function based on a set of coefficients updated according to an adaptive correlation calculation process to the continuous time waveform; subtracting the result of the nonlinearity function from the composite signal in order to generate a result E; and demodulating and decoding the result E by using a second demodulation and decoding chain in order to regenerate second information of the second signal LL.
Abstract:
A method for receiving a signal having a succession of symbols, transmitted by a digital modulation, each symbol transmitted having a phase and an amplitude belonging to a set of values in finite number, the method includes evaluating a phase error (PHE) on a received symbol (S), resulting from a signal transmission noise, correcting the phase of the received symbol according to the phase error evaluated, demodulating the symbol corrected in phase, and modeling the transmission noise by a Gaussian component not correlated with the signal received and defined by a power and an interference component defined by an amplitude and which phase is substantially uniformly distributed, the phase error of the received symbol evaluated on the basis of the power of Gaussian component and the amplitude of the interference component.